{"title":"同时功能分位数回归","authors":"Boyi Hu, Xixi Hu, Hua Liu, Jinhong You, Jiguo Cao","doi":"10.5705/ss.202021.0248","DOIUrl":null,"url":null,"abstract":"The conventional method for functional quantile regression (FQR) is to fit the regression model for each quantile of interest separately. Therefore, the slope function of the regression, as a bivariate function of time and quantile, is estimated as a univariate function of time for each fixed quantile. However, there are several limitations to this conventional strategy. For example, it cannot guarantee the monotonicity of the conditional quantiles, nor can it control the smoothness of the slope estimator as a bivariate function. In this paper, we propose a new framework for FQR, in which we simultaneously fit the FQR model for multiple quantiles, with the help of a bivariate basis under some constraints, such that the estimated quantiles satisfy the monotonicity conditions and the smoothness of the slope estimator is controlled. The proposed estimator for the slope function is shown to be asymptotically consistent, and we establish its asymptotic normality. We use simulation to evaluate the finite-sample performance of the proposed method and compare it with that of the conventional method. We demonstrate the proposed method by analyzing the effects of Statistica Sinica: Preprint doi:10.5705/ss.202021.0248","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Functional Quantile Regression\",\"authors\":\"Boyi Hu, Xixi Hu, Hua Liu, Jinhong You, Jiguo Cao\",\"doi\":\"10.5705/ss.202021.0248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional method for functional quantile regression (FQR) is to fit the regression model for each quantile of interest separately. Therefore, the slope function of the regression, as a bivariate function of time and quantile, is estimated as a univariate function of time for each fixed quantile. However, there are several limitations to this conventional strategy. For example, it cannot guarantee the monotonicity of the conditional quantiles, nor can it control the smoothness of the slope estimator as a bivariate function. In this paper, we propose a new framework for FQR, in which we simultaneously fit the FQR model for multiple quantiles, with the help of a bivariate basis under some constraints, such that the estimated quantiles satisfy the monotonicity conditions and the smoothness of the slope estimator is controlled. The proposed estimator for the slope function is shown to be asymptotically consistent, and we establish its asymptotic normality. We use simulation to evaluate the finite-sample performance of the proposed method and compare it with that of the conventional method. We demonstrate the proposed method by analyzing the effects of Statistica Sinica: Preprint doi:10.5705/ss.202021.0248\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202021.0248\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0248","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The conventional method for functional quantile regression (FQR) is to fit the regression model for each quantile of interest separately. Therefore, the slope function of the regression, as a bivariate function of time and quantile, is estimated as a univariate function of time for each fixed quantile. However, there are several limitations to this conventional strategy. For example, it cannot guarantee the monotonicity of the conditional quantiles, nor can it control the smoothness of the slope estimator as a bivariate function. In this paper, we propose a new framework for FQR, in which we simultaneously fit the FQR model for multiple quantiles, with the help of a bivariate basis under some constraints, such that the estimated quantiles satisfy the monotonicity conditions and the smoothness of the slope estimator is controlled. The proposed estimator for the slope function is shown to be asymptotically consistent, and we establish its asymptotic normality. We use simulation to evaluate the finite-sample performance of the proposed method and compare it with that of the conventional method. We demonstrate the proposed method by analyzing the effects of Statistica Sinica: Preprint doi:10.5705/ss.202021.0248
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.