{"title":"半参数方法的分布均值降维","authors":"Zhengtian Zhu, Wang-li Xu, Liping Zhu","doi":"10.5705/ss.202022.0157","DOIUrl":null,"url":null,"abstract":"In the present article we recast the semi-parametric mean dimension reduction approaches under a least squares framework, which turns the problem of recovering the central mean subspace into a series of problems of estimating slopes in linear regressions. It also facilitates to incorporate penalties to produce sparse solutions. We further adapt the semi-parametric mean dimension reduction approaches to distributed settings when massive data are scattered at various locations and cannot be aggregated or processed through a single machine. We propose three communication-efficient distributed algorithms, the first yields a dense solution, the second produces a sparse estimation, and the third provides an orthonormal basis. The distributed algorithms reduce the computational complexities of the pooled ones substantially. In addition, the distributed algorithms attain oracle rates after a finite number of iterations. We conduct extensive numerical studies to demonstrate the finite-sample performance of the distributed estimates and to compare with the pooled algorithms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Mean Dimension Reduction Through Semi-parametric Approaches\",\"authors\":\"Zhengtian Zhu, Wang-li Xu, Liping Zhu\",\"doi\":\"10.5705/ss.202022.0157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article we recast the semi-parametric mean dimension reduction approaches under a least squares framework, which turns the problem of recovering the central mean subspace into a series of problems of estimating slopes in linear regressions. It also facilitates to incorporate penalties to produce sparse solutions. We further adapt the semi-parametric mean dimension reduction approaches to distributed settings when massive data are scattered at various locations and cannot be aggregated or processed through a single machine. We propose three communication-efficient distributed algorithms, the first yields a dense solution, the second produces a sparse estimation, and the third provides an orthonormal basis. The distributed algorithms reduce the computational complexities of the pooled ones substantially. In addition, the distributed algorithms attain oracle rates after a finite number of iterations. We conduct extensive numerical studies to demonstrate the finite-sample performance of the distributed estimates and to compare with the pooled algorithms.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0157\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0157","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Distributed Mean Dimension Reduction Through Semi-parametric Approaches
In the present article we recast the semi-parametric mean dimension reduction approaches under a least squares framework, which turns the problem of recovering the central mean subspace into a series of problems of estimating slopes in linear regressions. It also facilitates to incorporate penalties to produce sparse solutions. We further adapt the semi-parametric mean dimension reduction approaches to distributed settings when massive data are scattered at various locations and cannot be aggregated or processed through a single machine. We propose three communication-efficient distributed algorithms, the first yields a dense solution, the second produces a sparse estimation, and the third provides an orthonormal basis. The distributed algorithms reduce the computational complexities of the pooled ones substantially. In addition, the distributed algorithms attain oracle rates after a finite number of iterations. We conduct extensive numerical studies to demonstrate the finite-sample performance of the distributed estimates and to compare with the pooled algorithms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.