基于创新多芯片模块(MCM) lqfn型封装技术的大电流(40A)同步降压转换器系统协同设计

T. Harrison, Jie Chen, R. Murugan
{"title":"基于创新多芯片模块(MCM) lqfn型封装技术的大电流(40A)同步降压转换器系统协同设计","authors":"T. Harrison, Jie Chen, R. Murugan","doi":"10.1109/ECTC.2019.00254","DOIUrl":null,"url":null,"abstract":"The drive for multi-chip module (MCM) packaging technology essentially stems from the ever-increasing demand for miniaturization of power electronics. While promising, MCM packaging technologies present considerable design challenges (viz. electrical, thermal, reliability and manufacturing/assembly) if system co-design techniques are not adopted early in the design process. In this paper we present the electrical system co-design and measurement validation results of a high-efficiency, single channel, integrated FET, synchronous buck converter packaged in a 40-pin 7.00mm × 5.00mm MCM-in-LQFN-type innovative package. Due to the complex 3D level of integration of the monolithic control, drive circuitry, and the two discrete N-channel NexFETTM power MOSFETs, electromagnetic interactions, between die, package, and PCB, are exacerbated with potential impact to system-level performance. We detail here how optimization of the system, was achieved through a coupled circuit-to-electromagnetic co-design modeling and simulation methodology. Laboratory measurements on an integrated high current (40A) synchronous step-down converter are presented that validate the integrity of the co-design modeling and simulation methodology.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"245 1","pages":"1653-1659"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"System Co-Design of a High Current (40A) Synchronous Step-Down Converter in an Innovative Multi-chip Module (MCM) LQFN-Type Packaging Technology\",\"authors\":\"T. Harrison, Jie Chen, R. Murugan\",\"doi\":\"10.1109/ECTC.2019.00254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drive for multi-chip module (MCM) packaging technology essentially stems from the ever-increasing demand for miniaturization of power electronics. While promising, MCM packaging technologies present considerable design challenges (viz. electrical, thermal, reliability and manufacturing/assembly) if system co-design techniques are not adopted early in the design process. In this paper we present the electrical system co-design and measurement validation results of a high-efficiency, single channel, integrated FET, synchronous buck converter packaged in a 40-pin 7.00mm × 5.00mm MCM-in-LQFN-type innovative package. Due to the complex 3D level of integration of the monolithic control, drive circuitry, and the two discrete N-channel NexFETTM power MOSFETs, electromagnetic interactions, between die, package, and PCB, are exacerbated with potential impact to system-level performance. We detail here how optimization of the system, was achieved through a coupled circuit-to-electromagnetic co-design modeling and simulation methodology. Laboratory measurements on an integrated high current (40A) synchronous step-down converter are presented that validate the integrity of the co-design modeling and simulation methodology.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"245 1\",\"pages\":\"1653-1659\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多芯片模块(MCM)封装技术的发展主要源于对电力电子器件小型化日益增长的需求。虽然MCM封装技术很有前途,但如果在设计过程的早期不采用系统协同设计技术,那么MCM封装技术将面临相当大的设计挑战(即电气、热、可靠性和制造/组装)。本文介绍了一种高效、单通道、集成FET、同步降压转换器的电气系统协同设计和测量验证结果,该转换器封装在40引脚7.00mm × 5.00mm mcm - In - lqfn型创新封装中。由于单片控制、驱动电路和两个分立n通道NexFETTM功率mosfet的复杂3D级集成,加剧了芯片、封装和PCB之间的电磁相互作用,并对系统级性能产生潜在影响。我们在这里详细介绍了如何通过耦合电路-电磁协同设计建模和仿真方法来实现系统的优化。对集成大电流(40A)同步降压转换器进行了实验室测量,验证了协同设计建模和仿真方法的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System Co-Design of a High Current (40A) Synchronous Step-Down Converter in an Innovative Multi-chip Module (MCM) LQFN-Type Packaging Technology
The drive for multi-chip module (MCM) packaging technology essentially stems from the ever-increasing demand for miniaturization of power electronics. While promising, MCM packaging technologies present considerable design challenges (viz. electrical, thermal, reliability and manufacturing/assembly) if system co-design techniques are not adopted early in the design process. In this paper we present the electrical system co-design and measurement validation results of a high-efficiency, single channel, integrated FET, synchronous buck converter packaged in a 40-pin 7.00mm × 5.00mm MCM-in-LQFN-type innovative package. Due to the complex 3D level of integration of the monolithic control, drive circuitry, and the two discrete N-channel NexFETTM power MOSFETs, electromagnetic interactions, between die, package, and PCB, are exacerbated with potential impact to system-level performance. We detail here how optimization of the system, was achieved through a coupled circuit-to-electromagnetic co-design modeling and simulation methodology. Laboratory measurements on an integrated high current (40A) synchronous step-down converter are presented that validate the integrity of the co-design modeling and simulation methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further Enhancement of Thermal Conductivity through Optimal Uses of h-BN Fillers in Polymer-Based Thermal Interface Material for Power Electronics A Novel Design of a Bandwidth Enhanced Dual-Band Impedance Matching Network with Coupled Line Wave Slowing A New Development of Direct Bonding to Aluminum and Nickel Surfaces by Silver Sintering in air Atmosphere Signal Integrity of Submicron InFO Heterogeneous Integration for High Performance Computing Applications Multilayer Glass Substrate with High Density Via Structure for All Inorganic Multi-chip Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1