用于蛋白质晶体紫外可见和x射线分析的微系统

L. Cheung, R. Quick, S.K. Singh, A. Weichsel, W. Montfort, Y. Zohar
{"title":"用于蛋白质晶体紫外可见和x射线分析的微系统","authors":"L. Cheung, R. Quick, S.K. Singh, A. Weichsel, W. Montfort, Y. Zohar","doi":"10.1109/MEMSYS.2007.4433161","DOIUrl":null,"url":null,"abstract":"polydimethylsiloxane (PDMS) based microsystems have successfully been fabricated and characterized for studying protein crystals utilizing both UV-visible spectroscopy and X-ray crystallography. Transmittance tests have been conducted with PDMS and glass substrates; the measurements indicate that in PDMS, unlike glass, the emerging intensity is higher than 50% of the incident intensity as long as the total optical path is shorter than 100 mum. Indeed, both the UV-visible spectrum and X-ray diffraction of a protein crystal enclosed in a PDMS device are almost identical to those of the crystal alone. Hence, PDMS is suitable as substrate material in device fabrication to study protein crystals. In glass, however, the UV-visible spectrum is significantly distorted and the X-ray diffraction pattern is rather weak resulting in poor signal to noise ratio. Furthermore, microsystems integrated with micro- channels allowing continuous exchange of buffer solution around the protein crystals have been tested; this would greatly enhance the potential to induce, trap and characterize functional states in proteins.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"44 1","pages":"569-572"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microsystems for UV-visible and x-ray analysis of protein crystals\",\"authors\":\"L. Cheung, R. Quick, S.K. Singh, A. Weichsel, W. Montfort, Y. Zohar\",\"doi\":\"10.1109/MEMSYS.2007.4433161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"polydimethylsiloxane (PDMS) based microsystems have successfully been fabricated and characterized for studying protein crystals utilizing both UV-visible spectroscopy and X-ray crystallography. Transmittance tests have been conducted with PDMS and glass substrates; the measurements indicate that in PDMS, unlike glass, the emerging intensity is higher than 50% of the incident intensity as long as the total optical path is shorter than 100 mum. Indeed, both the UV-visible spectrum and X-ray diffraction of a protein crystal enclosed in a PDMS device are almost identical to those of the crystal alone. Hence, PDMS is suitable as substrate material in device fabrication to study protein crystals. In glass, however, the UV-visible spectrum is significantly distorted and the X-ray diffraction pattern is rather weak resulting in poor signal to noise ratio. Furthermore, microsystems integrated with micro- channels allowing continuous exchange of buffer solution around the protein crystals have been tested; this would greatly enhance the potential to induce, trap and characterize functional states in proteins.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"44 1\",\"pages\":\"569-572\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于聚二甲基硅氧烷(PDMS)的微系统已成功制备,并利用紫外可见光谱和x射线晶体学对其进行了表征。在PDMS和玻璃基板上进行了透光率测试;测量结果表明,在PDMS中,与玻璃不同,只要总光程短于100 μ m,新兴强度高于入射强度的50%。事实上,包裹在PDMS装置中的蛋白质晶体的紫外可见光谱和x射线衍射几乎与单独的晶体相同。因此,PDMS适合作为研究蛋白质晶体的器件制造中的衬底材料。然而,在玻璃中,紫外可见光谱明显扭曲,x射线衍射图样较弱,导致信噪比较差。此外,与微通道集成的微系统允许在蛋白质晶体周围连续交换缓冲溶液,已经进行了测试;这将极大地增强诱导、捕获和表征蛋白质功能状态的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microsystems for UV-visible and x-ray analysis of protein crystals
polydimethylsiloxane (PDMS) based microsystems have successfully been fabricated and characterized for studying protein crystals utilizing both UV-visible spectroscopy and X-ray crystallography. Transmittance tests have been conducted with PDMS and glass substrates; the measurements indicate that in PDMS, unlike glass, the emerging intensity is higher than 50% of the incident intensity as long as the total optical path is shorter than 100 mum. Indeed, both the UV-visible spectrum and X-ray diffraction of a protein crystal enclosed in a PDMS device are almost identical to those of the crystal alone. Hence, PDMS is suitable as substrate material in device fabrication to study protein crystals. In glass, however, the UV-visible spectrum is significantly distorted and the X-ray diffraction pattern is rather weak resulting in poor signal to noise ratio. Furthermore, microsystems integrated with micro- channels allowing continuous exchange of buffer solution around the protein crystals have been tested; this would greatly enhance the potential to induce, trap and characterize functional states in proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Process compensated micromechanical resonators A novel scanning Thermal Microscopy System High aspect ratio nano-scale CFX structures fabricated by deep-rie Electrochromic voxel array for 3D display Pyrolyzed polymer mesh electrode integrated into fluidic channel for gate type sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1