{"title":"基于行为类型的消息传递静态验证框架","authors":"J. Lange, Nicholas Ng, B. Toninho, N. Yoshida","doi":"10.1145/3180155.3180157","DOIUrl":null,"url":null,"abstract":"The Go programming language has been heavily adopted in industry as a language that efficiently combines systems programming with concurrency. Go's concurrency primitives, inspired by process calculi such as CCS and CSP, feature channel-based communication and lightweight threads, providing a distinct means of structuring concurrent software. Despite its popularity, the Go programming ecosystem offers little to no support for guaranteeing the correctness of message-passing concurrent programs. This work proposes a practical verification framework for message passing concurrency in Go by developing a robust static analysis that infers an abstract model of a program's communication behaviour in the form of a behavioural type, a powerful process calculi typing discipline. We make use of our analysis to deploy a model and termination checking based verification of the inferred behavioural type that is suitable for a range of safety and liveness properties of Go programs, providing several improvements over existing approaches. We evaluate our framework and its implementation on publicly available real-world Go code.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"70 1","pages":"1137-1148"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"A Static Verification Framework for Message Passing in Go Using Behavioural Types\",\"authors\":\"J. Lange, Nicholas Ng, B. Toninho, N. Yoshida\",\"doi\":\"10.1145/3180155.3180157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Go programming language has been heavily adopted in industry as a language that efficiently combines systems programming with concurrency. Go's concurrency primitives, inspired by process calculi such as CCS and CSP, feature channel-based communication and lightweight threads, providing a distinct means of structuring concurrent software. Despite its popularity, the Go programming ecosystem offers little to no support for guaranteeing the correctness of message-passing concurrent programs. This work proposes a practical verification framework for message passing concurrency in Go by developing a robust static analysis that infers an abstract model of a program's communication behaviour in the form of a behavioural type, a powerful process calculi typing discipline. We make use of our analysis to deploy a model and termination checking based verification of the inferred behavioural type that is suitable for a range of safety and liveness properties of Go programs, providing several improvements over existing approaches. We evaluate our framework and its implementation on publicly available real-world Go code.\",\"PeriodicalId\":6560,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"volume\":\"70 1\",\"pages\":\"1137-1148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180155.3180157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Static Verification Framework for Message Passing in Go Using Behavioural Types
The Go programming language has been heavily adopted in industry as a language that efficiently combines systems programming with concurrency. Go's concurrency primitives, inspired by process calculi such as CCS and CSP, feature channel-based communication and lightweight threads, providing a distinct means of structuring concurrent software. Despite its popularity, the Go programming ecosystem offers little to no support for guaranteeing the correctness of message-passing concurrent programs. This work proposes a practical verification framework for message passing concurrency in Go by developing a robust static analysis that infers an abstract model of a program's communication behaviour in the form of a behavioural type, a powerful process calculi typing discipline. We make use of our analysis to deploy a model and termination checking based verification of the inferred behavioural type that is suitable for a range of safety and liveness properties of Go programs, providing several improvements over existing approaches. We evaluate our framework and its implementation on publicly available real-world Go code.