Myungkwan Ryu, Tae Sang Kim, K. Son, Hyun-Suk Kim, Joonsuk Park, Jong‐Baek Seon, Seok-Jun Seo, Sun‐Jae Kim, Eunha Lee, Hyungik Lee, S. Jeon, Seungwu Han, Sang Yoon Lee
{"title":"高迁移率氧化锌氮化tft,在光照偏应力条件下具有稳定的操作,适用于大面积和高分辨率显示应用","authors":"Myungkwan Ryu, Tae Sang Kim, K. Son, Hyun-Suk Kim, Joonsuk Park, Jong‐Baek Seon, Seok-Jun Seo, Sun‐Jae Kim, Eunha Lee, Hyungik Lee, S. Jeon, Seungwu Han, Sang Yoon Lee","doi":"10.1109/IEDM.2012.6478986","DOIUrl":null,"url":null,"abstract":"We have investigated material and electrical properties of ZnON based on 1st principle calculations and TFT evaluations. Theoretically, ZnON has high mobility characteristics and band-structure for high stability. Fabricated TFTs exhibited high mobility (100 cm2/Vs), good uniformity, and stable operation performance such as -2.87 V of Vth-shift under light illuminated bias-stress condition. As a new approach to overcome the performance limit of oxide-semiconductors, ZnON technology is strongly promising to achieve high mobility and operation stability required for next generation displays.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications\",\"authors\":\"Myungkwan Ryu, Tae Sang Kim, K. Son, Hyun-Suk Kim, Joonsuk Park, Jong‐Baek Seon, Seok-Jun Seo, Sun‐Jae Kim, Eunha Lee, Hyungik Lee, S. Jeon, Seungwu Han, Sang Yoon Lee\",\"doi\":\"10.1109/IEDM.2012.6478986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated material and electrical properties of ZnON based on 1st principle calculations and TFT evaluations. Theoretically, ZnON has high mobility characteristics and band-structure for high stability. Fabricated TFTs exhibited high mobility (100 cm2/Vs), good uniformity, and stable operation performance such as -2.87 V of Vth-shift under light illuminated bias-stress condition. As a new approach to overcome the performance limit of oxide-semiconductors, ZnON technology is strongly promising to achieve high mobility and operation stability required for next generation displays.\",\"PeriodicalId\":6376,\"journal\":{\"name\":\"2012 International Electron Devices Meeting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2012.6478986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6478986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications
We have investigated material and electrical properties of ZnON based on 1st principle calculations and TFT evaluations. Theoretically, ZnON has high mobility characteristics and band-structure for high stability. Fabricated TFTs exhibited high mobility (100 cm2/Vs), good uniformity, and stable operation performance such as -2.87 V of Vth-shift under light illuminated bias-stress condition. As a new approach to overcome the performance limit of oxide-semiconductors, ZnON technology is strongly promising to achieve high mobility and operation stability required for next generation displays.