{"title":"高密度铜填充硅通孔硅中间层的有效模量预测","authors":"Chang-Chun Lee, Y. Shih, C. Wu","doi":"10.1109/IMPACT.2011.6117215","DOIUrl":null,"url":null,"abstract":"A simulation-based prediction of the effective moduli of a silicon interposer with Cu-filled through-silicon via (TSV) is developed to resolve the critical issue of finite element (FE) modeling. The simulation-based prediction in the current study follows the analysis of mechanical reliability urgently considered in large-scale three-dimensional (3D) integrated circuit (IC) packaging. According to the common testing concepts of mechanical properties, finite element analysis (FEA) is systematically performed to obtain the equivalent mechanical properties when different volume fractions of Cu-filled TSV are induced. The proposed simulation methodology is validated and then compared with an analytical model. Results show that the Cu-rich mechanical properties become observable when the TSV pitch is smaller than 25 μm.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"1 1","pages":"351-354"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective moduli prediction for silicon interposer with high-density Cu-filled through-silicon via\",\"authors\":\"Chang-Chun Lee, Y. Shih, C. Wu\",\"doi\":\"10.1109/IMPACT.2011.6117215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simulation-based prediction of the effective moduli of a silicon interposer with Cu-filled through-silicon via (TSV) is developed to resolve the critical issue of finite element (FE) modeling. The simulation-based prediction in the current study follows the analysis of mechanical reliability urgently considered in large-scale three-dimensional (3D) integrated circuit (IC) packaging. According to the common testing concepts of mechanical properties, finite element analysis (FEA) is systematically performed to obtain the equivalent mechanical properties when different volume fractions of Cu-filled TSV are induced. The proposed simulation methodology is validated and then compared with an analytical model. Results show that the Cu-rich mechanical properties become observable when the TSV pitch is smaller than 25 μm.\",\"PeriodicalId\":6360,\"journal\":{\"name\":\"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)\",\"volume\":\"1 1\",\"pages\":\"351-354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPACT.2011.6117215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2011.6117215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective moduli prediction for silicon interposer with high-density Cu-filled through-silicon via
A simulation-based prediction of the effective moduli of a silicon interposer with Cu-filled through-silicon via (TSV) is developed to resolve the critical issue of finite element (FE) modeling. The simulation-based prediction in the current study follows the analysis of mechanical reliability urgently considered in large-scale three-dimensional (3D) integrated circuit (IC) packaging. According to the common testing concepts of mechanical properties, finite element analysis (FEA) is systematically performed to obtain the equivalent mechanical properties when different volume fractions of Cu-filled TSV are induced. The proposed simulation methodology is validated and then compared with an analytical model. Results show that the Cu-rich mechanical properties become observable when the TSV pitch is smaller than 25 μm.