Mayy Habayeb, Syed Shariyar Murtaza, A. Miranskyy, A. Bener
{"title":"[期刊第一]利用隐马尔可夫模型预测修复bug的时间","authors":"Mayy Habayeb, Syed Shariyar Murtaza, A. Miranskyy, A. Bener","doi":"10.1145/3180155.3182522","DOIUrl":null,"url":null,"abstract":"A significant amount of time is spent by software developers in investigating bug reports. It is useful to indicate when a bug report will be closed, since it would help software teams to prioritise their work. Several studies have been conducted to address this problem in the past decade. Most of these studies have used the frequency of occurrence of certain developer activities as input attributes in building their prediction models. However, these approaches tend to ignore the temporal nature of the occurrence of these activities. In this paper, a novel approach using Hidden Markov models (HMMs) and temporal sequences of developer activities is proposed. The approach is empirically demonstrated in a case study using eight years of bug reports collected from the Firefox project.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"71 1","pages":"700-700"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"[Journal First] On the Use of Hidden Markov Model to Predict the Time to Fix Bugs\",\"authors\":\"Mayy Habayeb, Syed Shariyar Murtaza, A. Miranskyy, A. Bener\",\"doi\":\"10.1145/3180155.3182522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant amount of time is spent by software developers in investigating bug reports. It is useful to indicate when a bug report will be closed, since it would help software teams to prioritise their work. Several studies have been conducted to address this problem in the past decade. Most of these studies have used the frequency of occurrence of certain developer activities as input attributes in building their prediction models. However, these approaches tend to ignore the temporal nature of the occurrence of these activities. In this paper, a novel approach using Hidden Markov models (HMMs) and temporal sequences of developer activities is proposed. The approach is empirically demonstrated in a case study using eight years of bug reports collected from the Firefox project.\",\"PeriodicalId\":6560,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"volume\":\"71 1\",\"pages\":\"700-700\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180155.3182522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3182522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Journal First] On the Use of Hidden Markov Model to Predict the Time to Fix Bugs
A significant amount of time is spent by software developers in investigating bug reports. It is useful to indicate when a bug report will be closed, since it would help software teams to prioritise their work. Several studies have been conducted to address this problem in the past decade. Most of these studies have used the frequency of occurrence of certain developer activities as input attributes in building their prediction models. However, these approaches tend to ignore the temporal nature of the occurrence of these activities. In this paper, a novel approach using Hidden Markov models (HMMs) and temporal sequences of developer activities is proposed. The approach is empirically demonstrated in a case study using eight years of bug reports collected from the Firefox project.