[期刊第一]利用隐马尔可夫模型预测修复bug的时间

Mayy Habayeb, Syed Shariyar Murtaza, A. Miranskyy, A. Bener
{"title":"[期刊第一]利用隐马尔可夫模型预测修复bug的时间","authors":"Mayy Habayeb, Syed Shariyar Murtaza, A. Miranskyy, A. Bener","doi":"10.1145/3180155.3182522","DOIUrl":null,"url":null,"abstract":"A significant amount of time is spent by software developers in investigating bug reports. It is useful to indicate when a bug report will be closed, since it would help software teams to prioritise their work. Several studies have been conducted to address this problem in the past decade. Most of these studies have used the frequency of occurrence of certain developer activities as input attributes in building their prediction models. However, these approaches tend to ignore the temporal nature of the occurrence of these activities. In this paper, a novel approach using Hidden Markov models (HMMs) and temporal sequences of developer activities is proposed. The approach is empirically demonstrated in a case study using eight years of bug reports collected from the Firefox project.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"71 1","pages":"700-700"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"[Journal First] On the Use of Hidden Markov Model to Predict the Time to Fix Bugs\",\"authors\":\"Mayy Habayeb, Syed Shariyar Murtaza, A. Miranskyy, A. Bener\",\"doi\":\"10.1145/3180155.3182522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant amount of time is spent by software developers in investigating bug reports. It is useful to indicate when a bug report will be closed, since it would help software teams to prioritise their work. Several studies have been conducted to address this problem in the past decade. Most of these studies have used the frequency of occurrence of certain developer activities as input attributes in building their prediction models. However, these approaches tend to ignore the temporal nature of the occurrence of these activities. In this paper, a novel approach using Hidden Markov models (HMMs) and temporal sequences of developer activities is proposed. The approach is empirically demonstrated in a case study using eight years of bug reports collected from the Firefox project.\",\"PeriodicalId\":6560,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"volume\":\"71 1\",\"pages\":\"700-700\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180155.3182522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3182522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

软件开发人员花费了大量的时间来调查bug报告。指出何时关闭错误报告是很有用的,因为它可以帮助软件团队确定工作的优先级。在过去的十年里,已经进行了几项研究来解决这个问题。这些研究大多使用某些开发人员活动的发生频率作为构建预测模型的输入属性。然而,这些方法往往忽略了这些活动发生的时间性质。本文提出了一种利用隐马尔可夫模型(hmm)和开发人员活动时间序列的新方法。该方法在一个案例研究中得到了实证证明,该案例研究使用了从Firefox项目收集的8年bug报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Journal First] On the Use of Hidden Markov Model to Predict the Time to Fix Bugs
A significant amount of time is spent by software developers in investigating bug reports. It is useful to indicate when a bug report will be closed, since it would help software teams to prioritise their work. Several studies have been conducted to address this problem in the past decade. Most of these studies have used the frequency of occurrence of certain developer activities as input attributes in building their prediction models. However, these approaches tend to ignore the temporal nature of the occurrence of these activities. In this paper, a novel approach using Hidden Markov models (HMMs) and temporal sequences of developer activities is proposed. The approach is empirically demonstrated in a case study using eight years of bug reports collected from the Firefox project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Launch-Mode-Aware Context-Sensitive Activity Transition Analysis A Combinatorial Approach for Exposing Off-Nominal Behaviors Perses: Syntax-Guided Program Reduction Fine-Grained Test Minimization From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1