图像分类中查询概念学习的框架

A. L. Ratan, O. Maron, W. Grimson, Tomas Lozano-Perez
{"title":"图像分类中查询概念学习的框架","authors":"A. L. Ratan, O. Maron, W. Grimson, Tomas Lozano-Perez","doi":"10.1109/CVPR.1999.786973","DOIUrl":null,"url":null,"abstract":"In this paper, we adapt the Multiple Instance Learning paradigm using the Diverse Density algorithm as a way of modeling the ambiguity in images in order to learn \"visual concepts\" that can be used to classify new images. In this framework, a user labels an image as positive if the image contains the concept. Each example image is a bag of instances (sub-images) where only the bag is labeled-not the individual instances (sub-images). From a small collection of positive and negative examples, the system learns the concept and uses it to retrieve images that contain the concept from a large database. The learned \"concepts\" are simple templates that capture the color, texture and spatial properties of the class of images. We introduced this method earlier in the domain of natural scene classification using simple, low resolution sub-images as instances. In this paper, we extend the bag generator (the mechanism which takes an image and generates a set of instances) to generate more complex instances using multiple cues on segmented high resolution images. We show that this method can be used to learn certain object class concepts (e.g. cars) in addition, to natural scenes.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"27 1","pages":"423-429 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"A framework for learning query concepts in image classification\",\"authors\":\"A. L. Ratan, O. Maron, W. Grimson, Tomas Lozano-Perez\",\"doi\":\"10.1109/CVPR.1999.786973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we adapt the Multiple Instance Learning paradigm using the Diverse Density algorithm as a way of modeling the ambiguity in images in order to learn \\\"visual concepts\\\" that can be used to classify new images. In this framework, a user labels an image as positive if the image contains the concept. Each example image is a bag of instances (sub-images) where only the bag is labeled-not the individual instances (sub-images). From a small collection of positive and negative examples, the system learns the concept and uses it to retrieve images that contain the concept from a large database. The learned \\\"concepts\\\" are simple templates that capture the color, texture and spatial properties of the class of images. We introduced this method earlier in the domain of natural scene classification using simple, low resolution sub-images as instances. In this paper, we extend the bag generator (the mechanism which takes an image and generates a set of instances) to generate more complex instances using multiple cues on segmented high resolution images. We show that this method can be used to learn certain object class concepts (e.g. cars) in addition, to natural scenes.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"27 1\",\"pages\":\"423-429 Vol. 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.786973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

在本文中,我们采用多实例学习范式,使用不同密度算法作为对图像中的模糊性建模的一种方式,以学习可用于分类新图像的“视觉概念”。在这个框架中,如果图像包含这个概念,则用户将其标记为正面。每个示例图像都是一个实例包(子图像),其中只标记了实例包,而不标记单个实例(子图像)。从一小部分正面和负面的例子中,系统学习这个概念,并用它从一个大的数据库中检索包含这个概念的图像。学习到的“概念”是简单的模板,用于捕获图像类的颜色、纹理和空间属性。我们之前在自然场景分类领域使用简单、低分辨率的子图像作为实例介绍了这种方法。在本文中,我们扩展了bag生成器(获取图像并生成一组实例的机制),以便在分割的高分辨率图像上使用多个线索生成更复杂的实例。我们表明,除了自然场景之外,这种方法还可以用于学习某些对象类概念(例如汽车)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A framework for learning query concepts in image classification
In this paper, we adapt the Multiple Instance Learning paradigm using the Diverse Density algorithm as a way of modeling the ambiguity in images in order to learn "visual concepts" that can be used to classify new images. In this framework, a user labels an image as positive if the image contains the concept. Each example image is a bag of instances (sub-images) where only the bag is labeled-not the individual instances (sub-images). From a small collection of positive and negative examples, the system learns the concept and uses it to retrieve images that contain the concept from a large database. The learned "concepts" are simple templates that capture the color, texture and spatial properties of the class of images. We introduced this method earlier in the domain of natural scene classification using simple, low resolution sub-images as instances. In this paper, we extend the bag generator (the mechanism which takes an image and generates a set of instances) to generate more complex instances using multiple cues on segmented high resolution images. We show that this method can be used to learn certain object class concepts (e.g. cars) in addition, to natural scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1