基于石墨烯嵌入式弯曲传感器和物联网技术的无线人形机器人操作

J. Jadon
{"title":"基于石墨烯嵌入式弯曲传感器和物联网技术的无线人形机器人操作","authors":"J. Jadon","doi":"10.35940/ijeat.a3805.1012122","DOIUrl":null,"url":null,"abstract":"The use of Robots is a trending technology but automation and Artificial Intelligence are not fully achieved till date. This paper aims to propose an innovative system to integrate human intelligence with Robotics. The robots which have been designed to work in harsh conditions are controlled using graphene-based flexible bend sensors. These sensors are applied to the human body and are powered by solar energy. Here a flexible sensor is applied on each bend on the human body and respective data of bend angle is transmitted to the raspberry pi 3 model B kits which are programmed to act accordingly and the same bend is obtained in the Robot. The sensor which we have used in this project removes the messy wiring and there is no need to wear any kind of suit. The required movements for the robot are produced by a human after applying the sensors on each joint. It looks like a pasting that is pasted across the joint. These sensors are made from a biocompatible material, thus does not have any dermatological ill effect on the operator. The graphene-based sensor has a subsequent role in robotics as they develop position matrices that determine the current position of various members of the humanoid robot. Robotic application demands sensors with a higher degree of repeatability, precision, and reliability which is obtained using the Graphene-based bend sensors. Each sensor is self-capable to carry out motion of one degree of motion. The use of an accelerometer attached along with the sensor helps to control the speed of robotic operation. This system is suitable to control the robot from a distance and uses it in critical conditions with the intelligence of the human being who is operating it, the rise in temperature leads to an increase in the time-lapse in command and action. But still, it can be treated as the substitute for artificially intelligent robots as we have not reached the level of intelligence in human beings. This work is based on the combined concepts of mechanical, computer, and electronics engineering.","PeriodicalId":13981,"journal":{"name":"International Journal of Engineering and Advanced Technology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operation of Wireless Humanoid Robot using Graphene Embedded Bend Sensor and Internet of Things Technology\",\"authors\":\"J. Jadon\",\"doi\":\"10.35940/ijeat.a3805.1012122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Robots is a trending technology but automation and Artificial Intelligence are not fully achieved till date. This paper aims to propose an innovative system to integrate human intelligence with Robotics. The robots which have been designed to work in harsh conditions are controlled using graphene-based flexible bend sensors. These sensors are applied to the human body and are powered by solar energy. Here a flexible sensor is applied on each bend on the human body and respective data of bend angle is transmitted to the raspberry pi 3 model B kits which are programmed to act accordingly and the same bend is obtained in the Robot. The sensor which we have used in this project removes the messy wiring and there is no need to wear any kind of suit. The required movements for the robot are produced by a human after applying the sensors on each joint. It looks like a pasting that is pasted across the joint. These sensors are made from a biocompatible material, thus does not have any dermatological ill effect on the operator. The graphene-based sensor has a subsequent role in robotics as they develop position matrices that determine the current position of various members of the humanoid robot. Robotic application demands sensors with a higher degree of repeatability, precision, and reliability which is obtained using the Graphene-based bend sensors. Each sensor is self-capable to carry out motion of one degree of motion. The use of an accelerometer attached along with the sensor helps to control the speed of robotic operation. This system is suitable to control the robot from a distance and uses it in critical conditions with the intelligence of the human being who is operating it, the rise in temperature leads to an increase in the time-lapse in command and action. But still, it can be treated as the substitute for artificially intelligent robots as we have not reached the level of intelligence in human beings. This work is based on the combined concepts of mechanical, computer, and electronics engineering.\",\"PeriodicalId\":13981,\"journal\":{\"name\":\"International Journal of Engineering and Advanced Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Advanced Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijeat.a3805.1012122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.a3805.1012122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人的使用是一种趋势技术,但自动化和人工智能尚未完全实现。本文旨在提出一种将人类智能与机器人技术相结合的创新系统。设计用于恶劣条件下工作的机器人使用基于石墨烯的柔性弯曲传感器进行控制。这些传感器应用于人体,由太阳能供电。在人体的每个弯曲处都安装了一个柔性传感器,并将各自的弯曲角度数据传输到树莓派3模型B套件中,该套件通过编程进行相应的动作,从而在机器人中获得相同的弯曲。我们在这个项目中使用的传感器去除了杂乱的布线,不需要穿任何类型的西装。在每个关节上安装传感器后,机器人所需的动作由人来完成。它看起来像是粘在关节上的浆糊。这些传感器由生物相容性材料制成,因此对操作者没有任何皮肤疾病影响。基于石墨烯的传感器在机器人技术中具有后续作用,因为它们开发了确定人形机器人各个成员当前位置的位置矩阵。机器人应用要求传感器具有更高的可重复性、精度和可靠性,而使用石墨烯弯曲传感器可以获得这些要求。每个传感器都能自行完成一个度的运动。与传感器一起使用的加速度计有助于控制机器人操作的速度。该系统适用于远程控制机器人,并在关键条件下使用,操作人员的智能,温度的升高导致命令和动作的延时增加。但是,它仍然可以被视为人工智能机器人的替代品,因为我们还没有达到人类的智能水平。这项工作是基于机械、计算机和电子工程的综合概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operation of Wireless Humanoid Robot using Graphene Embedded Bend Sensor and Internet of Things Technology
The use of Robots is a trending technology but automation and Artificial Intelligence are not fully achieved till date. This paper aims to propose an innovative system to integrate human intelligence with Robotics. The robots which have been designed to work in harsh conditions are controlled using graphene-based flexible bend sensors. These sensors are applied to the human body and are powered by solar energy. Here a flexible sensor is applied on each bend on the human body and respective data of bend angle is transmitted to the raspberry pi 3 model B kits which are programmed to act accordingly and the same bend is obtained in the Robot. The sensor which we have used in this project removes the messy wiring and there is no need to wear any kind of suit. The required movements for the robot are produced by a human after applying the sensors on each joint. It looks like a pasting that is pasted across the joint. These sensors are made from a biocompatible material, thus does not have any dermatological ill effect on the operator. The graphene-based sensor has a subsequent role in robotics as they develop position matrices that determine the current position of various members of the humanoid robot. Robotic application demands sensors with a higher degree of repeatability, precision, and reliability which is obtained using the Graphene-based bend sensors. Each sensor is self-capable to carry out motion of one degree of motion. The use of an accelerometer attached along with the sensor helps to control the speed of robotic operation. This system is suitable to control the robot from a distance and uses it in critical conditions with the intelligence of the human being who is operating it, the rise in temperature leads to an increase in the time-lapse in command and action. But still, it can be treated as the substitute for artificially intelligent robots as we have not reached the level of intelligence in human beings. This work is based on the combined concepts of mechanical, computer, and electronics engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Car Door Sound Quality Assessment - A Review for NVH Performance Research Airport Runway Crack Detection to Classify and Densify Surface Crack Type Computer-Aided Diagnosis System for Automated Detection of Mri Brain Tumors Smart Artificial Intelligence System for Heart Disease Prediction A Comprehensive Study on Failure Modes and Mechanisms of Thin Film Chip Resistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1