一种4M Synapses集成模拟ReRAM的66.5 TOPS/W神经网络处理器,具有单元电流控制写入和灵活的网络结构

R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, Hitoshi Suwa, R. Yasuhara, K. Katayama, T. Mikawa, Y. Gohou
{"title":"一种4M Synapses集成模拟ReRAM的66.5 TOPS/W神经网络处理器,具有单元电流控制写入和灵活的网络结构","authors":"R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, Hitoshi Suwa, R. Yasuhara, K. Katayama, T. Mikawa, Y. Gohou","doi":"10.1109/VLSIT.2018.8510676","DOIUrl":null,"url":null,"abstract":"This paper presents low-power neural-network (NN) processor using ReRAM to store weights as analog resistance for future AI computing. We propose ReRAM perceptron circuit for realizing large scale integration, highly accurate cell current controlled writing scheme, and flexible network architecture (FNA) in which any NNs can be configured. Fabricated 180nm test chip shows well-controlled analog cell current with linear 30μA dynamic range and 0.59μA variation of 1 sigma, results in 90.8% MNIST numerical recognition rate. Furthermore, 4M synapses integrated 40nm test chip achieves lower analog cell current and 66.5 TOPS/W power efficiency.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"4 1","pages":"175-176"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":"{\"title\":\"A 4M Synapses integrated Analog ReRAM based 66.5 TOPS/W Neural-Network Processor with Cell Current Controlled Writing and Flexible Network Architecture\",\"authors\":\"R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, Hitoshi Suwa, R. Yasuhara, K. Katayama, T. Mikawa, Y. Gohou\",\"doi\":\"10.1109/VLSIT.2018.8510676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents low-power neural-network (NN) processor using ReRAM to store weights as analog resistance for future AI computing. We propose ReRAM perceptron circuit for realizing large scale integration, highly accurate cell current controlled writing scheme, and flexible network architecture (FNA) in which any NNs can be configured. Fabricated 180nm test chip shows well-controlled analog cell current with linear 30μA dynamic range and 0.59μA variation of 1 sigma, results in 90.8% MNIST numerical recognition rate. Furthermore, 4M synapses integrated 40nm test chip achieves lower analog cell current and 66.5 TOPS/W power efficiency.\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"4 1\",\"pages\":\"175-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

摘要

本文提出了一种低功耗神经网络(NN)处理器,利用ReRAM存储权值作为未来人工智能计算的模拟阻力。我们提出了实现大规模集成的ReRAM感知器电路,高精度的单元电流控制写入方案,以及可配置任何神经网络的灵活网络架构(FNA)。制备的180nm测试芯片具有良好的模拟单元电流控制,线性动态范围为30μA,变化幅度为0.59μA,变化幅度为1 σ, MNIST数值识别率为90.8%。此外,4M突触集成的40nm测试芯片实现了更低的模拟电池电流和66.5 TOPS/W的功率效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 4M Synapses integrated Analog ReRAM based 66.5 TOPS/W Neural-Network Processor with Cell Current Controlled Writing and Flexible Network Architecture
This paper presents low-power neural-network (NN) processor using ReRAM to store weights as analog resistance for future AI computing. We propose ReRAM perceptron circuit for realizing large scale integration, highly accurate cell current controlled writing scheme, and flexible network architecture (FNA) in which any NNs can be configured. Fabricated 180nm test chip shows well-controlled analog cell current with linear 30μA dynamic range and 0.59μA variation of 1 sigma, results in 90.8% MNIST numerical recognition rate. Furthermore, 4M synapses integrated 40nm test chip achieves lower analog cell current and 66.5 TOPS/W power efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low RA Magnetic Tunnel Junction Arrays in Conjunction with Low Switching Current and High Breakdown Voltage for STT-MRAM at 10 nm and Beyond A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs A Threshold Switch Augmented Hybrid-FeFET (H-FeFET) with Enhanced Read Distinguishability and Reduced Programming Voltage for Non-Volatile Memory Applications Sensors and related devices for IoT, medicine and s mart-living A Comprehensive Study of Polymorphic Phase Distribution of Ferroelectric-Dielectrics and Interfacial Layer Effects on Negative Capacitance FETs for Sub-5 nm Node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1