R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, Hitoshi Suwa, R. Yasuhara, K. Katayama, T. Mikawa, Y. Gohou
{"title":"一种4M Synapses集成模拟ReRAM的66.5 TOPS/W神经网络处理器,具有单元电流控制写入和灵活的网络结构","authors":"R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, Hitoshi Suwa, R. Yasuhara, K. Katayama, T. Mikawa, Y. Gohou","doi":"10.1109/VLSIT.2018.8510676","DOIUrl":null,"url":null,"abstract":"This paper presents low-power neural-network (NN) processor using ReRAM to store weights as analog resistance for future AI computing. We propose ReRAM perceptron circuit for realizing large scale integration, highly accurate cell current controlled writing scheme, and flexible network architecture (FNA) in which any NNs can be configured. Fabricated 180nm test chip shows well-controlled analog cell current with linear 30μA dynamic range and 0.59μA variation of 1 sigma, results in 90.8% MNIST numerical recognition rate. Furthermore, 4M synapses integrated 40nm test chip achieves lower analog cell current and 66.5 TOPS/W power efficiency.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"4 1","pages":"175-176"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":"{\"title\":\"A 4M Synapses integrated Analog ReRAM based 66.5 TOPS/W Neural-Network Processor with Cell Current Controlled Writing and Flexible Network Architecture\",\"authors\":\"R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, Hitoshi Suwa, R. Yasuhara, K. Katayama, T. Mikawa, Y. Gohou\",\"doi\":\"10.1109/VLSIT.2018.8510676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents low-power neural-network (NN) processor using ReRAM to store weights as analog resistance for future AI computing. We propose ReRAM perceptron circuit for realizing large scale integration, highly accurate cell current controlled writing scheme, and flexible network architecture (FNA) in which any NNs can be configured. Fabricated 180nm test chip shows well-controlled analog cell current with linear 30μA dynamic range and 0.59μA variation of 1 sigma, results in 90.8% MNIST numerical recognition rate. Furthermore, 4M synapses integrated 40nm test chip achieves lower analog cell current and 66.5 TOPS/W power efficiency.\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"4 1\",\"pages\":\"175-176\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 4M Synapses integrated Analog ReRAM based 66.5 TOPS/W Neural-Network Processor with Cell Current Controlled Writing and Flexible Network Architecture
This paper presents low-power neural-network (NN) processor using ReRAM to store weights as analog resistance for future AI computing. We propose ReRAM perceptron circuit for realizing large scale integration, highly accurate cell current controlled writing scheme, and flexible network architecture (FNA) in which any NNs can be configured. Fabricated 180nm test chip shows well-controlled analog cell current with linear 30μA dynamic range and 0.59μA variation of 1 sigma, results in 90.8% MNIST numerical recognition rate. Furthermore, 4M synapses integrated 40nm test chip achieves lower analog cell current and 66.5 TOPS/W power efficiency.