使用时间序列模型(Prophet)预测COVID-19的传播、恢复和死亡

Sk. Golam Mahmud, Mahbub C. Mishu, Dipika Nandi
{"title":"使用时间序列模型(Prophet)预测COVID-19的传播、恢复和死亡","authors":"Sk. Golam Mahmud, Mahbub C. Mishu, Dipika Nandi","doi":"10.53799/ajse.v20i1.152","DOIUrl":null,"url":null,"abstract":"The world is facing its biggest challenge since 1920 due to spread of COVID-19 virus. Identified in China in December 2019, the virus has spread more than 200 countries in the world. Scientists have named the virus as Novel Corona Virus (belongs to SARS group virus). The virus has caused severe disruption to our world. Educational institutions, financial Services, government services and many other sectors are badly affected by this virus. More importantly, the virus has caused a massive amount of human deaths around the world and still its infecting people every day. Scientist around the world are trying to find a solution to stop the COVID-19. Their solutions include identifying possible effective vaccine, computer-aided modelling to see the pattern of spread etc. Using Machine Learning techniques, it is possible to forecast the spread, death, and recovery due to COVID-19. In this article, we have shown a machine learning model named as Prophet Time Series Analysis to forecast the spread, death, and recovery in different countries. We train the model using the available historical data on COVID-19 from John Hopkins University's COVID-19 site. Then we forecast spread, death, and recovery for seven days using a well known forecasting model called Prophet. This interval can be increased to see the effect of COVID-19. We chose 145 days of historical data to train the model then we predict effect for seven days (15 June 2020 to 22 June 2020). To verify out result, we compare the predicted value with actual value of spread, death and recovery. The model provides accuracy over 92% in all the cases. Our model can be used to identify the effect of COVID-19 in any countries in the world. The system is developed using Python language and visualization is also possible interactively. By using our system, it will be possible to observe the effect of spread, death and recovery for any countries for any period of time. © 2021 AIUB Office of Research and Publication. All rights reserved.","PeriodicalId":36368,"journal":{"name":"AIUB Journal of Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Spread, Recovery and Death Due to COVID-19 using a Time-Series Model (Prophet)\",\"authors\":\"Sk. Golam Mahmud, Mahbub C. Mishu, Dipika Nandi\",\"doi\":\"10.53799/ajse.v20i1.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world is facing its biggest challenge since 1920 due to spread of COVID-19 virus. Identified in China in December 2019, the virus has spread more than 200 countries in the world. Scientists have named the virus as Novel Corona Virus (belongs to SARS group virus). The virus has caused severe disruption to our world. Educational institutions, financial Services, government services and many other sectors are badly affected by this virus. More importantly, the virus has caused a massive amount of human deaths around the world and still its infecting people every day. Scientist around the world are trying to find a solution to stop the COVID-19. Their solutions include identifying possible effective vaccine, computer-aided modelling to see the pattern of spread etc. Using Machine Learning techniques, it is possible to forecast the spread, death, and recovery due to COVID-19. In this article, we have shown a machine learning model named as Prophet Time Series Analysis to forecast the spread, death, and recovery in different countries. We train the model using the available historical data on COVID-19 from John Hopkins University's COVID-19 site. Then we forecast spread, death, and recovery for seven days using a well known forecasting model called Prophet. This interval can be increased to see the effect of COVID-19. We chose 145 days of historical data to train the model then we predict effect for seven days (15 June 2020 to 22 June 2020). To verify out result, we compare the predicted value with actual value of spread, death and recovery. The model provides accuracy over 92% in all the cases. Our model can be used to identify the effect of COVID-19 in any countries in the world. The system is developed using Python language and visualization is also possible interactively. By using our system, it will be possible to observe the effect of spread, death and recovery for any countries for any period of time. © 2021 AIUB Office of Research and Publication. All rights reserved.\",\"PeriodicalId\":36368,\"journal\":{\"name\":\"AIUB Journal of Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIUB Journal of Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53799/ajse.v20i1.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53799/ajse.v20i1.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

由于新型冠状病毒感染症(COVID-19)的扩散,世界面临着自1920年以来最大的挑战。该病毒于2019年12月在中国被发现,目前已传播到世界200多个国家。科学家将这种病毒命名为“新型冠状病毒”(属于SARS病毒组)。这种病毒对我们的世界造成了严重的破坏。教育机构、金融服务、政府服务和许多其他部门受到这种病毒的严重影响。更重要的是,这种病毒在世界范围内造成了大量的人类死亡,而且每天都有感染者。世界各地的科学家都在努力寻找阻止COVID-19的解决方案。他们的解决方案包括确定可能有效的疫苗,建立计算机辅助模型以观察传播模式等。利用机器学习技术,可以预测COVID-19的传播、死亡和恢复。在本文中,我们展示了一个名为“先知时间序列分析”的机器学习模型,用于预测不同国家的传播、死亡和恢复。我们使用约翰霍普金斯大学COVID-19网站上的COVID-19可用历史数据来训练模型。然后,我们使用一个著名的预测模型“先知”来预测7天内的传播、死亡和恢复情况。这个间隔可以增加,以观察COVID-19的影响。我们选择145天的历史数据来训练模型,然后预测7天(2020年6月15日至2020年6月22日)的效果。为了验证我们的结果,我们将预测值与实际的扩散、死亡和恢复值进行了比较。该模型在所有情况下的准确率都超过92%。我们的模型可用于确定COVID-19在世界上任何国家的影响。该系统是用Python语言开发的,也可以实现交互式可视化。通过使用我们的系统,可以观察任何国家在任何时期的传播、死亡和恢复的影响。©2021 AIUB研究与出版办公室。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Spread, Recovery and Death Due to COVID-19 using a Time-Series Model (Prophet)
The world is facing its biggest challenge since 1920 due to spread of COVID-19 virus. Identified in China in December 2019, the virus has spread more than 200 countries in the world. Scientists have named the virus as Novel Corona Virus (belongs to SARS group virus). The virus has caused severe disruption to our world. Educational institutions, financial Services, government services and many other sectors are badly affected by this virus. More importantly, the virus has caused a massive amount of human deaths around the world and still its infecting people every day. Scientist around the world are trying to find a solution to stop the COVID-19. Their solutions include identifying possible effective vaccine, computer-aided modelling to see the pattern of spread etc. Using Machine Learning techniques, it is possible to forecast the spread, death, and recovery due to COVID-19. In this article, we have shown a machine learning model named as Prophet Time Series Analysis to forecast the spread, death, and recovery in different countries. We train the model using the available historical data on COVID-19 from John Hopkins University's COVID-19 site. Then we forecast spread, death, and recovery for seven days using a well known forecasting model called Prophet. This interval can be increased to see the effect of COVID-19. We chose 145 days of historical data to train the model then we predict effect for seven days (15 June 2020 to 22 June 2020). To verify out result, we compare the predicted value with actual value of spread, death and recovery. The model provides accuracy over 92% in all the cases. Our model can be used to identify the effect of COVID-19 in any countries in the world. The system is developed using Python language and visualization is also possible interactively. By using our system, it will be possible to observe the effect of spread, death and recovery for any countries for any period of time. © 2021 AIUB Office of Research and Publication. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIUB Journal of Science and Engineering
AIUB Journal of Science and Engineering Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
3
期刊最新文献
STUDI KARAKTERISTIK ASPAL BUTON DAERAH KABUNGKA KECAMATAN PASARWAJO KABUPATEN BUTON, SULAWESI TENGGARA DITRIBUSI PERGERAKAN PENUMPANG MENGGUNAKAN KAPAL FEERY DENGAN METODE DETROIT DI PROVINSI MALUKU UTARA STUDI INTERPRETASI LAPISAN BAWAH PERMUKAAN TANAH DENGAN METODE GEOLISTRIK DI JALAN LINTAS SUBAIM-BULI KECAMATAN WASILE TIMUR KABUPATEN HALMAHERA TIMUR convoHER2: A Deep Neural Network for Multi-Stage Classification of HER2 Breast Cancer ANALISIS SISTEM PENYARINGAN AIR BERSIH PADA AIR SUMUR WARGA DI KELURAHAN FITU KOTA TERNATE SELATAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1