Marcelo J. Segura, C. Sisterna, Martin Guzzo, Gustavo Ensinck, Carlos Gil
{"title":"基于FPGA的移动机器人室内自定位超宽带数字接收机","authors":"Marcelo J. Segura, C. Sisterna, Martin Guzzo, Gustavo Ensinck, Carlos Gil","doi":"10.1109/SPL.2011.5782632","DOIUrl":null,"url":null,"abstract":"In impulse-based UWB systems, positional accuracy is inversely proportional to the signal bandwidth. In this work, a number of anchor nodes are located at fixed positions in an indoor environment transmitting synchronized 2.5ns pulses with Differential Binary Phase Shift Keying (DBPSK) modulation. An UWB receiver mounted on a mobile robot utilizes Time Difference of Arrival (TDOA) between pairs of synchronized transmitting anchor nodes for localization. Self-localization implies that position estimation algorithms run locally on the mobile robot. A prototype non-coherent UWB receiver using off-the-shelf components is implemented where signal acquisition runs on a Field Programmable Gate Array (FPGA). Measurement results indicate sub-20cm positional accuracy with Line Of Sight (LOS) and Non-Line of Sight (NLOS) conditions relative to fixed anchor nodes in a typical indoor environment.","PeriodicalId":6329,"journal":{"name":"2011 VII Southern Conference on Programmable Logic (SPL)","volume":"1 1","pages":"97-102"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra wideband digital receiver implemented on FPGA for mobile robot indoor self-localization\",\"authors\":\"Marcelo J. Segura, C. Sisterna, Martin Guzzo, Gustavo Ensinck, Carlos Gil\",\"doi\":\"10.1109/SPL.2011.5782632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In impulse-based UWB systems, positional accuracy is inversely proportional to the signal bandwidth. In this work, a number of anchor nodes are located at fixed positions in an indoor environment transmitting synchronized 2.5ns pulses with Differential Binary Phase Shift Keying (DBPSK) modulation. An UWB receiver mounted on a mobile robot utilizes Time Difference of Arrival (TDOA) between pairs of synchronized transmitting anchor nodes for localization. Self-localization implies that position estimation algorithms run locally on the mobile robot. A prototype non-coherent UWB receiver using off-the-shelf components is implemented where signal acquisition runs on a Field Programmable Gate Array (FPGA). Measurement results indicate sub-20cm positional accuracy with Line Of Sight (LOS) and Non-Line of Sight (NLOS) conditions relative to fixed anchor nodes in a typical indoor environment.\",\"PeriodicalId\":6329,\"journal\":{\"name\":\"2011 VII Southern Conference on Programmable Logic (SPL)\",\"volume\":\"1 1\",\"pages\":\"97-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 VII Southern Conference on Programmable Logic (SPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPL.2011.5782632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 VII Southern Conference on Programmable Logic (SPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPL.2011.5782632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra wideband digital receiver implemented on FPGA for mobile robot indoor self-localization
In impulse-based UWB systems, positional accuracy is inversely proportional to the signal bandwidth. In this work, a number of anchor nodes are located at fixed positions in an indoor environment transmitting synchronized 2.5ns pulses with Differential Binary Phase Shift Keying (DBPSK) modulation. An UWB receiver mounted on a mobile robot utilizes Time Difference of Arrival (TDOA) between pairs of synchronized transmitting anchor nodes for localization. Self-localization implies that position estimation algorithms run locally on the mobile robot. A prototype non-coherent UWB receiver using off-the-shelf components is implemented where signal acquisition runs on a Field Programmable Gate Array (FPGA). Measurement results indicate sub-20cm positional accuracy with Line Of Sight (LOS) and Non-Line of Sight (NLOS) conditions relative to fixed anchor nodes in a typical indoor environment.