用于增强微电子冷却的添加剂激光金属沉积在硅上

Arad Azizi, Matthias A. Daeumer, Jacob C. Simmons, B. Sammakia, B. Murray, Scott N. Schiffres
{"title":"用于增强微电子冷却的添加剂激光金属沉积在硅上","authors":"Arad Azizi, Matthias A. Daeumer, Jacob C. Simmons, B. Sammakia, B. Murray, Scott N. Schiffres","doi":"10.1109/ECTC.2019.00302","DOIUrl":null,"url":null,"abstract":"We previously demonstrated how the Sn3Ag4Ti alloy can robustly bond onto silicon via selective laser melting (SLM). By employing this technology, thermal management devices (e.g., micro-channels, vapor chamber evaporators, heat pipes) can be directly printed onto the electronic package (silicon die) without using thermal interface materials. Under immersion two-phase cooling (pool boiling), we compare the performance of three chip cooling methods (conventional heat sink, bare silicon die and additively manufactured metal micro-fins) under high heat flux conditions (100 W/cm^2). Heat transfer simulations show a significant reduction in the chip temperature for the silicon micro-fins. Reduction of the chip operating temperature or increase in clock speed are some of the advantages of this technology, which results from the elimination of thermal interface materials in the electronic package. Performance and reliability aspects of this technology are discussed through experiments and computational models.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"61 1","pages":"1970-1976"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Additive Laser Metal Deposition Onto Silicon for Enhanced Microelectronics Cooling\",\"authors\":\"Arad Azizi, Matthias A. Daeumer, Jacob C. Simmons, B. Sammakia, B. Murray, Scott N. Schiffres\",\"doi\":\"10.1109/ECTC.2019.00302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We previously demonstrated how the Sn3Ag4Ti alloy can robustly bond onto silicon via selective laser melting (SLM). By employing this technology, thermal management devices (e.g., micro-channels, vapor chamber evaporators, heat pipes) can be directly printed onto the electronic package (silicon die) without using thermal interface materials. Under immersion two-phase cooling (pool boiling), we compare the performance of three chip cooling methods (conventional heat sink, bare silicon die and additively manufactured metal micro-fins) under high heat flux conditions (100 W/cm^2). Heat transfer simulations show a significant reduction in the chip temperature for the silicon micro-fins. Reduction of the chip operating temperature or increase in clock speed are some of the advantages of this technology, which results from the elimination of thermal interface materials in the electronic package. Performance and reliability aspects of this technology are discussed through experiments and computational models.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"61 1\",\"pages\":\"1970-1976\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们之前展示了Sn3Ag4Ti合金如何通过选择性激光熔化(SLM)牢固地结合到硅上。通过采用该技术,热管理器件(如微通道、蒸汽室蒸发器、热管)可以直接印刷到电子封装(硅模)上,而无需使用热界面材料。在浸入式两相冷却(池沸)条件下,比较了三种芯片冷却方式(传统散热器、裸硅模和增材制造金属微翅片)在高热流密度条件下(100 W/cm^2)的性能。传热模拟结果表明,硅微翅片的芯片温度显著降低。降低芯片工作温度或提高时钟速度是该技术的一些优点,这是由于消除了电子封装中的热界面材料。通过实验和计算模型对该技术的性能和可靠性进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additive Laser Metal Deposition Onto Silicon for Enhanced Microelectronics Cooling
We previously demonstrated how the Sn3Ag4Ti alloy can robustly bond onto silicon via selective laser melting (SLM). By employing this technology, thermal management devices (e.g., micro-channels, vapor chamber evaporators, heat pipes) can be directly printed onto the electronic package (silicon die) without using thermal interface materials. Under immersion two-phase cooling (pool boiling), we compare the performance of three chip cooling methods (conventional heat sink, bare silicon die and additively manufactured metal micro-fins) under high heat flux conditions (100 W/cm^2). Heat transfer simulations show a significant reduction in the chip temperature for the silicon micro-fins. Reduction of the chip operating temperature or increase in clock speed are some of the advantages of this technology, which results from the elimination of thermal interface materials in the electronic package. Performance and reliability aspects of this technology are discussed through experiments and computational models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further Enhancement of Thermal Conductivity through Optimal Uses of h-BN Fillers in Polymer-Based Thermal Interface Material for Power Electronics A Novel Design of a Bandwidth Enhanced Dual-Band Impedance Matching Network with Coupled Line Wave Slowing A New Development of Direct Bonding to Aluminum and Nickel Surfaces by Silver Sintering in air Atmosphere Signal Integrity of Submicron InFO Heterogeneous Integration for High Performance Computing Applications Multilayer Glass Substrate with High Density Via Structure for All Inorganic Multi-chip Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1