基于电容的记录对称线性模拟神经网络交叉点阵列

Y. Li, S. Kim, X. Sun, P. Solomon, T. Gokmen, H. Tsai, S. Koswatta, Z. Ren, R. Mo, C. Yeh, W. Haensch, E. Leobandung
{"title":"基于电容的记录对称线性模拟神经网络交叉点阵列","authors":"Y. Li, S. Kim, X. Sun, P. Solomon, T. Gokmen, H. Tsai, S. Koswatta, Z. Ren, R. Mo, C. Yeh, W. Haensch, E. Leobandung","doi":"10.1109/VLSIT.2018.8510648","DOIUrl":null,"url":null,"abstract":"We report a capacitor-based cross-point array that can be used to train analog-based Deep Neural Networks (DNNs), fabricated with trench capacitors in 14nm technology. The fundamental DNN functionalities of multiply-accumulate and weight-update are demonstrated. We also demonstrate the best symmetry and linearity ever reported for an analog cross-point array system. For DNNs, the capacitor leakage does not impact learning accuracy even without any refresh cycle, as the weights are continuously updated during training. This makes capacitor an ideal candidate for neural network training. We also discuss the scalability of this array using optimized low-leakage DRAM technology.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"6 1","pages":"25-26"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Capacitor-based Cross-point Array for Analog Neural Network with Record Symmetry and Linearity\",\"authors\":\"Y. Li, S. Kim, X. Sun, P. Solomon, T. Gokmen, H. Tsai, S. Koswatta, Z. Ren, R. Mo, C. Yeh, W. Haensch, E. Leobandung\",\"doi\":\"10.1109/VLSIT.2018.8510648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a capacitor-based cross-point array that can be used to train analog-based Deep Neural Networks (DNNs), fabricated with trench capacitors in 14nm technology. The fundamental DNN functionalities of multiply-accumulate and weight-update are demonstrated. We also demonstrate the best symmetry and linearity ever reported for an analog cross-point array system. For DNNs, the capacitor leakage does not impact learning accuracy even without any refresh cycle, as the weights are continuously updated during training. This makes capacitor an ideal candidate for neural network training. We also discuss the scalability of this array using optimized low-leakage DRAM technology.\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"6 1\",\"pages\":\"25-26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们报告了一种基于电容器的交叉点阵列,可用于训练基于模拟的深度神经网络(dnn),该阵列由14nm技术的沟槽电容器制造。演示了多重累积和权重更新的基本深度神经网络功能。我们还证明了模拟交叉点阵列系统的最佳对称性和线性性。对于dnn,即使没有任何刷新周期,电容泄漏也不会影响学习精度,因为权重在训练过程中不断更新。这使得电容器成为神经网络训练的理想候选者。我们还讨论了该阵列使用优化的低泄漏DRAM技术的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capacitor-based Cross-point Array for Analog Neural Network with Record Symmetry and Linearity
We report a capacitor-based cross-point array that can be used to train analog-based Deep Neural Networks (DNNs), fabricated with trench capacitors in 14nm technology. The fundamental DNN functionalities of multiply-accumulate and weight-update are demonstrated. We also demonstrate the best symmetry and linearity ever reported for an analog cross-point array system. For DNNs, the capacitor leakage does not impact learning accuracy even without any refresh cycle, as the weights are continuously updated during training. This makes capacitor an ideal candidate for neural network training. We also discuss the scalability of this array using optimized low-leakage DRAM technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low RA Magnetic Tunnel Junction Arrays in Conjunction with Low Switching Current and High Breakdown Voltage for STT-MRAM at 10 nm and Beyond A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs A Threshold Switch Augmented Hybrid-FeFET (H-FeFET) with Enhanced Read Distinguishability and Reduced Programming Voltage for Non-Volatile Memory Applications Sensors and related devices for IoT, medicine and s mart-living A Comprehensive Study of Polymorphic Phase Distribution of Ferroelectric-Dielectrics and Interfacial Layer Effects on Negative Capacitance FETs for Sub-5 nm Node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1