一种低功耗、高速的真随机数发生器

James Brown, R. Gao, Z. Ji, Jiezhi Chen, Jixuan Wu, Jianfu Zhang, Bo Zhou, Q. Shi, Jacob Crowford, Weidong Zhang
{"title":"一种低功耗、高速的真随机数发生器","authors":"James Brown, R. Gao, Z. Ji, Jiezhi Chen, Jixuan Wu, Jianfu Zhang, Bo Zhou, Q. Shi, Jacob Crowford, Weidong Zhang","doi":"10.1109/VLSIT.2018.8510671","DOIUrl":null,"url":null,"abstract":"A novel True Random Number Generator (TRNG), using random telegraph noise (RTN) as the entropy source, is proposed to address speed, design area, power and cost simultaneously. For the first time, the proposed design breaks the inherent speed limitation and generates true random numbers up to 3Mbps with ultra-low power. This is over 10 times faster than the state-of-the-art RTN-TRNG [6]. Moreover, the new design does not require selection of devices and thus avoids the use of large transistor array and laborious post-selection process. This reduces the circuit area and the cost. The proposed TRNG has been successfully validated on three different processes and they all passed the National Institute of Standards and Technology (NIST) tests, making it a suitable candidate for future cryptographically secured applications in the internet of things (IoT).","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"26 1","pages":"95-96"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A low-power and high-speed True Random Number Generator using generated RTN\",\"authors\":\"James Brown, R. Gao, Z. Ji, Jiezhi Chen, Jixuan Wu, Jianfu Zhang, Bo Zhou, Q. Shi, Jacob Crowford, Weidong Zhang\",\"doi\":\"10.1109/VLSIT.2018.8510671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel True Random Number Generator (TRNG), using random telegraph noise (RTN) as the entropy source, is proposed to address speed, design area, power and cost simultaneously. For the first time, the proposed design breaks the inherent speed limitation and generates true random numbers up to 3Mbps with ultra-low power. This is over 10 times faster than the state-of-the-art RTN-TRNG [6]. Moreover, the new design does not require selection of devices and thus avoids the use of large transistor array and laborious post-selection process. This reduces the circuit area and the cost. The proposed TRNG has been successfully validated on three different processes and they all passed the National Institute of Standards and Technology (NIST) tests, making it a suitable candidate for future cryptographically secured applications in the internet of things (IoT).\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"26 1\",\"pages\":\"95-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

提出了一种以随机电报噪声(RTN)作为熵源的真随机数发生器(TRNG),同时解决了速度、设计面积、功耗和成本的问题。该设计首次突破了固有的速度限制,以超低功耗产生高达3Mbps的真正随机数。这比最先进的RTN-TRNG快10倍以上[6]。此外,新设计不需要选择器件,从而避免了使用大型晶体管阵列和繁琐的后选过程。这减少了电路面积和成本。提议的TRNG已经在三个不同的过程中成功验证,并且它们都通过了国家标准与技术研究所(NIST)的测试,使其成为未来物联网(IoT)中加密安全应用的合适候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A low-power and high-speed True Random Number Generator using generated RTN
A novel True Random Number Generator (TRNG), using random telegraph noise (RTN) as the entropy source, is proposed to address speed, design area, power and cost simultaneously. For the first time, the proposed design breaks the inherent speed limitation and generates true random numbers up to 3Mbps with ultra-low power. This is over 10 times faster than the state-of-the-art RTN-TRNG [6]. Moreover, the new design does not require selection of devices and thus avoids the use of large transistor array and laborious post-selection process. This reduces the circuit area and the cost. The proposed TRNG has been successfully validated on three different processes and they all passed the National Institute of Standards and Technology (NIST) tests, making it a suitable candidate for future cryptographically secured applications in the internet of things (IoT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low RA Magnetic Tunnel Junction Arrays in Conjunction with Low Switching Current and High Breakdown Voltage for STT-MRAM at 10 nm and Beyond A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs A Threshold Switch Augmented Hybrid-FeFET (H-FeFET) with Enhanced Read Distinguishability and Reduced Programming Voltage for Non-Volatile Memory Applications Sensors and related devices for IoT, medicine and s mart-living A Comprehensive Study of Polymorphic Phase Distribution of Ferroelectric-Dielectrics and Interfacial Layer Effects on Negative Capacitance FETs for Sub-5 nm Node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1