电子纺织用导电织物的洗涤可靠性

J. Lee, Weifeng Liu, ChangHo Lo, Cheng-Chih Chen
{"title":"电子纺织用导电织物的洗涤可靠性","authors":"J. Lee, Weifeng Liu, ChangHo Lo, Cheng-Chih Chen","doi":"10.1109/ECTC.2019.00281","DOIUrl":null,"url":null,"abstract":"This paper presents studies on the launderability of 4 types of conductive fabrics made by weaving polyester and nylon yarns with metal coatings (Cu, Ag, Ni/Cu, Ni/Cu/Co). They are laminated with thermoplastic urethane (TPU) film under hot compression on the 3 common fabrics (Spandex, Nylon, Denim) with different elongation and flexibility. Electrical resistance as a function of laundry cycles is used to characterize the performance of the conductive materials. The laundry procedure is to follow AATCC M6 test standard by using the AATCC compliant laundry machine and dryer with the factor control such as detergent, water temperature, agitation speed and spin speed and so on. After intended wash and dry cycles, test samples are measured in electrical resistance with 4 point probe ohm meter to detect the resistance stability. The rise of resistance of conductive material over the wash/dry cycle can be compared among 4 metal coating on the 3 common fabrics. In general, the unstable resistance and electrical open can be reflected with the microstructure fracture observation under 3D optical microscope and SEM to provide further insight on the performance of these conductive materials withstanding laundering process. Furthermore, Non-destructive analysis of low angle XRD and XRF are also adopted to analyze the metal crystalline lattice structure and thickness change after laundering process for the understanding of degradation mechanisms. The elongation effect of base fabric of Spandex, Polyester and Nylon under certain washing shear force during agitation on the conductive fabric launderability can be concluded.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"1 1","pages":"1826-1832"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Laundering Reliability of Electrically Conductive Fabrics for E-Textile Applications\",\"authors\":\"J. Lee, Weifeng Liu, ChangHo Lo, Cheng-Chih Chen\",\"doi\":\"10.1109/ECTC.2019.00281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents studies on the launderability of 4 types of conductive fabrics made by weaving polyester and nylon yarns with metal coatings (Cu, Ag, Ni/Cu, Ni/Cu/Co). They are laminated with thermoplastic urethane (TPU) film under hot compression on the 3 common fabrics (Spandex, Nylon, Denim) with different elongation and flexibility. Electrical resistance as a function of laundry cycles is used to characterize the performance of the conductive materials. The laundry procedure is to follow AATCC M6 test standard by using the AATCC compliant laundry machine and dryer with the factor control such as detergent, water temperature, agitation speed and spin speed and so on. After intended wash and dry cycles, test samples are measured in electrical resistance with 4 point probe ohm meter to detect the resistance stability. The rise of resistance of conductive material over the wash/dry cycle can be compared among 4 metal coating on the 3 common fabrics. In general, the unstable resistance and electrical open can be reflected with the microstructure fracture observation under 3D optical microscope and SEM to provide further insight on the performance of these conductive materials withstanding laundering process. Furthermore, Non-destructive analysis of low angle XRD and XRF are also adopted to analyze the metal crystalline lattice structure and thickness change after laundering process for the understanding of degradation mechanisms. The elongation effect of base fabric of Spandex, Polyester and Nylon under certain washing shear force during agitation on the conductive fabric launderability can be concluded.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"1 1\",\"pages\":\"1826-1832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了用金属涂层(Cu、Ag、Ni/Cu、Ni/Cu/Co)织成的4种导电织物的耐洗性。它们是用热塑性聚氨酯(TPU)薄膜在3种不同伸长率和柔韧性的常见织物(氨纶、尼龙、牛仔布)上热压缩而成的。电阻作为洗衣周期的函数被用来表征导电材料的性能。洗衣程序是按照AATCC M6测试标准,使用符合AATCC标准的洗衣机和烘干机,并控制洗涤剂、水温、搅拌速度和旋转速度等因素。经过预期的洗涤和干燥循环后,测试样品用4点探头欧姆计测量电阻,以检测电阻的稳定性。导电材料在洗涤/干燥循环中电阻的上升可以在3种常见织物上的4种金属涂层之间进行比较。总的来说,在三维光学显微镜和扫描电镜下的微观断口观察可以反映出不稳定电阻和电开口,从而进一步了解这些导电材料在洗涤过程中的性能。此外,还采用低角XRD和XRF无损分析,分析洗涤过程后金属晶格结构和厚度变化,了解降解机理。得出氨纶、涤纶和尼龙基材在搅拌过程中一定洗涤剪切力下的伸长对导电织物可洗性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laundering Reliability of Electrically Conductive Fabrics for E-Textile Applications
This paper presents studies on the launderability of 4 types of conductive fabrics made by weaving polyester and nylon yarns with metal coatings (Cu, Ag, Ni/Cu, Ni/Cu/Co). They are laminated with thermoplastic urethane (TPU) film under hot compression on the 3 common fabrics (Spandex, Nylon, Denim) with different elongation and flexibility. Electrical resistance as a function of laundry cycles is used to characterize the performance of the conductive materials. The laundry procedure is to follow AATCC M6 test standard by using the AATCC compliant laundry machine and dryer with the factor control such as detergent, water temperature, agitation speed and spin speed and so on. After intended wash and dry cycles, test samples are measured in electrical resistance with 4 point probe ohm meter to detect the resistance stability. The rise of resistance of conductive material over the wash/dry cycle can be compared among 4 metal coating on the 3 common fabrics. In general, the unstable resistance and electrical open can be reflected with the microstructure fracture observation under 3D optical microscope and SEM to provide further insight on the performance of these conductive materials withstanding laundering process. Furthermore, Non-destructive analysis of low angle XRD and XRF are also adopted to analyze the metal crystalline lattice structure and thickness change after laundering process for the understanding of degradation mechanisms. The elongation effect of base fabric of Spandex, Polyester and Nylon under certain washing shear force during agitation on the conductive fabric launderability can be concluded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further Enhancement of Thermal Conductivity through Optimal Uses of h-BN Fillers in Polymer-Based Thermal Interface Material for Power Electronics A Novel Design of a Bandwidth Enhanced Dual-Band Impedance Matching Network with Coupled Line Wave Slowing A New Development of Direct Bonding to Aluminum and Nickel Surfaces by Silver Sintering in air Atmosphere Signal Integrity of Submicron InFO Heterogeneous Integration for High Performance Computing Applications Multilayer Glass Substrate with High Density Via Structure for All Inorganic Multi-chip Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1