基于断裂持续时间和活动断层走向的东加拉-帕卢海啸特征HC-plot法分析

R. Priadi, A. Wijaya, Maria Annaluna Pasaribu, Riska Yulinda
{"title":"基于断裂持续时间和活动断层走向的东加拉-帕卢海啸特征HC-plot法分析","authors":"R. Priadi, A. Wijaya, Maria Annaluna Pasaribu, Riska Yulinda","doi":"10.36435/jgf.v17i1.392","DOIUrl":null,"url":null,"abstract":"September 28th, 2018, Donggala-Palu earthquake M 7.5 occurred at depth of 12 km and generated tsunami to be released off the coast in Palu Bay. The tsunami that occurred in Palu was very interesting because the results of the earthquake source mechanism Palu had a type of strike-slip fault that should not have generated a tsunami. This study purpose to estimate the characteristics of the Donggala-Palu tsunami based on rupture duration ( and orientation fault activated using the HC-plot method. The data used in this study are data waveforms from 17 seismic stations and CMT Global catalog data with the area of research 0.87 0 N-1.78 0S dan 118.640E- 120.95 0E. The waveform data used is a phase P-PP vertical component signal with a Bandpass-filter 1-5 Hz for determination . The fastest rupture duration from the earthquake source is obtained from the calculation of each station. Delay time measurement after P wave for 90% (T0.9), 80% (T0.8), 50% (T0.5), dan 20% (T0.2) from its peak value. Then the HC-plot method is used to estimate the orientation of generator fault Palu earthquake and the direction of rupture from the focal mechanism. From the results of processing obtained 2 pairs of seismic stations with almost the same distance but with different azimuths. The fastest rupture duration is at BBSI station with value of 82.014 s and distance from station to epicenter . So that the rupture direction is in the azimuth  from the north. The result of fault orientation was obtained hypocenter distance to the centroid for nodal plane 1 is 6.32 km and nodal plane 2 is 30.17 km with distance centroid to hypocenter is 31.22 km. So in Palu earthquake, the tsunami generator fault was in nodal plane 1 with direction north-south. Criteria obtained indicate that the Palu earthquake M 7.5 has potential for a tsunami because of its  value has meet  ≥ 65 s, but from the result of the focal mechanism direction field not passing through the Palu bay is thought to be another parameter that generates a tsunami and Palu koro fault line uncharted.","PeriodicalId":32347,"journal":{"name":"Jurnal Meteorologi dan Geofisika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of the Donggala-Palu Tsunami Characteristics based on Rupture Duration (Tdur) and Active Fault Orientation using the HC-plot Method\",\"authors\":\"R. Priadi, A. Wijaya, Maria Annaluna Pasaribu, Riska Yulinda\",\"doi\":\"10.36435/jgf.v17i1.392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"September 28th, 2018, Donggala-Palu earthquake M 7.5 occurred at depth of 12 km and generated tsunami to be released off the coast in Palu Bay. The tsunami that occurred in Palu was very interesting because the results of the earthquake source mechanism Palu had a type of strike-slip fault that should not have generated a tsunami. This study purpose to estimate the characteristics of the Donggala-Palu tsunami based on rupture duration ( and orientation fault activated using the HC-plot method. The data used in this study are data waveforms from 17 seismic stations and CMT Global catalog data with the area of research 0.87 0 N-1.78 0S dan 118.640E- 120.95 0E. The waveform data used is a phase P-PP vertical component signal with a Bandpass-filter 1-5 Hz for determination . The fastest rupture duration from the earthquake source is obtained from the calculation of each station. Delay time measurement after P wave for 90% (T0.9), 80% (T0.8), 50% (T0.5), dan 20% (T0.2) from its peak value. Then the HC-plot method is used to estimate the orientation of generator fault Palu earthquake and the direction of rupture from the focal mechanism. From the results of processing obtained 2 pairs of seismic stations with almost the same distance but with different azimuths. The fastest rupture duration is at BBSI station with value of 82.014 s and distance from station to epicenter . So that the rupture direction is in the azimuth  from the north. The result of fault orientation was obtained hypocenter distance to the centroid for nodal plane 1 is 6.32 km and nodal plane 2 is 30.17 km with distance centroid to hypocenter is 31.22 km. So in Palu earthquake, the tsunami generator fault was in nodal plane 1 with direction north-south. Criteria obtained indicate that the Palu earthquake M 7.5 has potential for a tsunami because of its  value has meet  ≥ 65 s, but from the result of the focal mechanism direction field not passing through the Palu bay is thought to be another parameter that generates a tsunami and Palu koro fault line uncharted.\",\"PeriodicalId\":32347,\"journal\":{\"name\":\"Jurnal Meteorologi dan Geofisika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Meteorologi dan Geofisika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36435/jgf.v17i1.392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Meteorologi dan Geofisika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36435/jgf.v17i1.392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

2018年9月28日,东加拉-帕卢发生震源深度12公里的7.5级地震,并在帕卢湾海岸引发海啸。发生在帕卢的海啸非常有趣,因为地震震源机制的结果是,帕卢有一种走滑断层,不应该产生海啸。本研究旨在利用HC-plot方法估算东加拉-帕卢海啸的破裂持续时间和断层激活方向特征。本研究使用的数据是17个地震台站的数据波形和CMT全球目录数据,研究区域为0.87 0 N-1.78 0S dan 118.640E- 120.95 0E。使用的波形数据是相位P-PP垂直分量信号,带通滤波器1-5 Hz用于测定。通过各台站的计算得到震源的最快破裂持续时间。P波后延迟时间测量为其峰值的90% (T0.9)、80% (T0.8)、50% (T0.5)、20% (T0.2)。然后用HC-plot法从震源机制上估计了帕卢地震的发断层方位和破裂方向。从处理结果中得到了2对距离几乎相同但方位角不同的地震台站。BBSI站的断裂持续时间最快,为82.014 s,距离震中较远。所以破裂的方向与北边的方位角一致。断层定向结果表明,节点1到质心的距离为6.32 km,节点2到质心的距离为30.17 km,质心到震中的距离为31.22 km。因此,在帕卢地震中,海啸产生断层位于1节面,方向为南北。得到的判据表明,帕卢7.5级地震具有发生海啸的可能性,因为其震源机制的值已达到≥65 s,但从震源机制的结果来看,没有经过帕卢湾的方向场被认为是产生海啸的另一个参数,帕卢克罗断裂带尚未绘制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the Donggala-Palu Tsunami Characteristics based on Rupture Duration (Tdur) and Active Fault Orientation using the HC-plot Method
September 28th, 2018, Donggala-Palu earthquake M 7.5 occurred at depth of 12 km and generated tsunami to be released off the coast in Palu Bay. The tsunami that occurred in Palu was very interesting because the results of the earthquake source mechanism Palu had a type of strike-slip fault that should not have generated a tsunami. This study purpose to estimate the characteristics of the Donggala-Palu tsunami based on rupture duration ( and orientation fault activated using the HC-plot method. The data used in this study are data waveforms from 17 seismic stations and CMT Global catalog data with the area of research 0.87 0 N-1.78 0S dan 118.640E- 120.95 0E. The waveform data used is a phase P-PP vertical component signal with a Bandpass-filter 1-5 Hz for determination . The fastest rupture duration from the earthquake source is obtained from the calculation of each station. Delay time measurement after P wave for 90% (T0.9), 80% (T0.8), 50% (T0.5), dan 20% (T0.2) from its peak value. Then the HC-plot method is used to estimate the orientation of generator fault Palu earthquake and the direction of rupture from the focal mechanism. From the results of processing obtained 2 pairs of seismic stations with almost the same distance but with different azimuths. The fastest rupture duration is at BBSI station with value of 82.014 s and distance from station to epicenter . So that the rupture direction is in the azimuth  from the north. The result of fault orientation was obtained hypocenter distance to the centroid for nodal plane 1 is 6.32 km and nodal plane 2 is 30.17 km with distance centroid to hypocenter is 31.22 km. So in Palu earthquake, the tsunami generator fault was in nodal plane 1 with direction north-south. Criteria obtained indicate that the Palu earthquake M 7.5 has potential for a tsunami because of its  value has meet  ≥ 65 s, but from the result of the focal mechanism direction field not passing through the Palu bay is thought to be another parameter that generates a tsunami and Palu koro fault line uncharted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
ANALISIS FENOMENA URBAN HEAT ISLAND BERDASARKAN TUTUPAN LAHAN DI KOTA PEKANBARU Analysis of Land Cover Changes to Increase Land Surface Temperature in Surabaya using Landsat Satellite Prekursor MJO-Crossing (MJO-C) dan MJO-Blocking (MJO-B) di Benua Maritim Berdasarkan Transpor Kelembapan MEMBANGKITKAN DATA CUACA HARIAN DARI DATA BULANAN: STUDI KASUS SULAWESI UTARA On The Interannual Variability of Indonesian Monsoon Rainfall (IMR): A Literature Review of The Role of its External Forcing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1