Al衬垫上Pd涂层铜线的室温键合:用两阶段方法优化球键合

Nicholas Kam, M. Hook, Celal Con, K. Karim, M. Mayer
{"title":"Al衬垫上Pd涂层铜线的室温键合:用两阶段方法优化球键合","authors":"Nicholas Kam, M. Hook, Celal Con, K. Karim, M. Mayer","doi":"10.1109/ECTC.2019.00-14","DOIUrl":null,"url":null,"abstract":"Wirebonding performed at elevated temperatures is the standard interconnect process for integrated circuits, typically with the use of low-cost copper bonding wire. However, for specific applications it is necessary for wire bonds to be reliably joined at room-temperature. This paper details the development of a room-temperature ball bonding process using a 2-stage optimization method. The first stage optimizes ball geometry by applying a 32 design of experiment to bonding parameters impact force (IF) and electric flame-off (EFO) current. In the second stage bond shear strength is optimized by stepwise increase in ultrasonic amplitude. Target ball bond values were attained at optimized parameters: IF of 1331 mN, EFO current of 59.9 mA, and an ultrasonic amplitude of 26.46 US%. Pad lift during bonding was observed at excessive ultrasonic amplitudes above 40 US%, as determined by optical images at the bond interface. Bonding parameters at room-temperature (23°C) were increased when compared to a high temperature process (175°C) to account for reduced thermal energy. For the same geometry at room-temperature a 7 % increase to impact force was required. EFO current levels remained relatively constant between the two bonding temperatures. For the same shear strength at room-temperature a 18 % increase in ultrasound amplitude was required. The confirmed average shear strength achieved via the room-temperature process was 116 MPa. Higher values are possible.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"4 1","pages":"2219-2224"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-Temperature Bonding with Pd Coated Cu Wire on Al Pads: Ball Bond Optimization with 2-Stage Methodology\",\"authors\":\"Nicholas Kam, M. Hook, Celal Con, K. Karim, M. Mayer\",\"doi\":\"10.1109/ECTC.2019.00-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wirebonding performed at elevated temperatures is the standard interconnect process for integrated circuits, typically with the use of low-cost copper bonding wire. However, for specific applications it is necessary for wire bonds to be reliably joined at room-temperature. This paper details the development of a room-temperature ball bonding process using a 2-stage optimization method. The first stage optimizes ball geometry by applying a 32 design of experiment to bonding parameters impact force (IF) and electric flame-off (EFO) current. In the second stage bond shear strength is optimized by stepwise increase in ultrasonic amplitude. Target ball bond values were attained at optimized parameters: IF of 1331 mN, EFO current of 59.9 mA, and an ultrasonic amplitude of 26.46 US%. Pad lift during bonding was observed at excessive ultrasonic amplitudes above 40 US%, as determined by optical images at the bond interface. Bonding parameters at room-temperature (23°C) were increased when compared to a high temperature process (175°C) to account for reduced thermal energy. For the same geometry at room-temperature a 7 % increase to impact force was required. EFO current levels remained relatively constant between the two bonding temperatures. For the same shear strength at room-temperature a 18 % increase in ultrasound amplitude was required. The confirmed average shear strength achieved via the room-temperature process was 116 MPa. Higher values are possible.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"4 1\",\"pages\":\"2219-2224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高温下进行的线键合是集成电路的标准互连工艺,通常使用低成本的铜键合线。然而,对于特定的应用,有必要在室温下可靠地连接导线键。本文详细介绍了一种采用两阶段优化方法的室温球键合工艺的开发。第一阶段通过对键合参数(冲击力(IF)和电燃断(EFO)电流)进行32次实验设计,优化了球的几何形状。在第二阶段,通过逐步提高超声振幅来优化粘结强度。优化参数为:IF为1331 mN, EFO电流为59.9 mA,超声振幅为26.46 US%。根据键合界面的光学图像,在超过40 US%的超声波振幅下,可以观察到键合过程中的垫升。与高温工艺(175°C)相比,室温(23°C)下的键合参数增加,以减少热能。对于相同的几何形状,在室温下需要增加7%的冲击力。EFO电流水平在两个键合温度之间保持相对恒定。在室温下,相同的抗剪强度需要增加18%的超声振幅。通过室温处理获得的确定平均抗剪强度为116 MPa。更高的值是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Room-Temperature Bonding with Pd Coated Cu Wire on Al Pads: Ball Bond Optimization with 2-Stage Methodology
Wirebonding performed at elevated temperatures is the standard interconnect process for integrated circuits, typically with the use of low-cost copper bonding wire. However, for specific applications it is necessary for wire bonds to be reliably joined at room-temperature. This paper details the development of a room-temperature ball bonding process using a 2-stage optimization method. The first stage optimizes ball geometry by applying a 32 design of experiment to bonding parameters impact force (IF) and electric flame-off (EFO) current. In the second stage bond shear strength is optimized by stepwise increase in ultrasonic amplitude. Target ball bond values were attained at optimized parameters: IF of 1331 mN, EFO current of 59.9 mA, and an ultrasonic amplitude of 26.46 US%. Pad lift during bonding was observed at excessive ultrasonic amplitudes above 40 US%, as determined by optical images at the bond interface. Bonding parameters at room-temperature (23°C) were increased when compared to a high temperature process (175°C) to account for reduced thermal energy. For the same geometry at room-temperature a 7 % increase to impact force was required. EFO current levels remained relatively constant between the two bonding temperatures. For the same shear strength at room-temperature a 18 % increase in ultrasound amplitude was required. The confirmed average shear strength achieved via the room-temperature process was 116 MPa. Higher values are possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further Enhancement of Thermal Conductivity through Optimal Uses of h-BN Fillers in Polymer-Based Thermal Interface Material for Power Electronics A Novel Design of a Bandwidth Enhanced Dual-Band Impedance Matching Network with Coupled Line Wave Slowing A New Development of Direct Bonding to Aluminum and Nickel Surfaces by Silver Sintering in air Atmosphere Signal Integrity of Submicron InFO Heterogeneous Integration for High Performance Computing Applications Multilayer Glass Substrate with High Density Via Structure for All Inorganic Multi-chip Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1