{"title":"空间碎片和流星体环境对空间站太阳能电池阵组件影响的评估","authors":"H. Nahra","doi":"10.1109/PVSC.1988.105827","DOIUrl":null,"url":null,"abstract":"The methodology used to assess the probability of no impact of space debris and meteoroids on a spacecraft structure is applied to the space station solar cell array assembly. Starting with space debris and meteoroid flux models, the: (i) projected surface area of the solar cell string circuit of the solar array panel and the mast longeron; (ii) the design lifetime; and (iii) the probability of no impact on the solar mast and solar cell string circuits are determined as a function of particle size. The probability of no impact on the cell string circuits is used to derive the probability of no open-circuit panel. The probability of meeting a certain power requirement at the end of the design lifetime is then calculated as a function of impacting particle size. Coupled with a penetration and damage model correlation that relates the particle size to penetration depth and damage, the results of this analysis can be used to determine the probability of meeting the power requirements, given a degree of redundancy.<<ETX>>","PeriodicalId":10562,"journal":{"name":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","volume":"73 1","pages":"868-873 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly\",\"authors\":\"H. Nahra\",\"doi\":\"10.1109/PVSC.1988.105827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methodology used to assess the probability of no impact of space debris and meteoroids on a spacecraft structure is applied to the space station solar cell array assembly. Starting with space debris and meteoroid flux models, the: (i) projected surface area of the solar cell string circuit of the solar array panel and the mast longeron; (ii) the design lifetime; and (iii) the probability of no impact on the solar mast and solar cell string circuits are determined as a function of particle size. The probability of no impact on the cell string circuits is used to derive the probability of no open-circuit panel. The probability of meeting a certain power requirement at the end of the design lifetime is then calculated as a function of impacting particle size. Coupled with a penetration and damage model correlation that relates the particle size to penetration depth and damage, the results of this analysis can be used to determine the probability of meeting the power requirements, given a degree of redundancy.<<ETX>>\",\"PeriodicalId\":10562,\"journal\":{\"name\":\"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference\",\"volume\":\"73 1\",\"pages\":\"868-873 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.1988.105827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1988.105827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly
The methodology used to assess the probability of no impact of space debris and meteoroids on a spacecraft structure is applied to the space station solar cell array assembly. Starting with space debris and meteoroid flux models, the: (i) projected surface area of the solar cell string circuit of the solar array panel and the mast longeron; (ii) the design lifetime; and (iii) the probability of no impact on the solar mast and solar cell string circuits are determined as a function of particle size. The probability of no impact on the cell string circuits is used to derive the probability of no open-circuit panel. The probability of meeting a certain power requirement at the end of the design lifetime is then calculated as a function of impacting particle size. Coupled with a penetration and damage model correlation that relates the particle size to penetration depth and damage, the results of this analysis can be used to determine the probability of meeting the power requirements, given a degree of redundancy.<>