使用GAN生成尼泊尔手写字母

Basant Bhandari, Aakash Raj Dhakal, Laxman Maharjan, Asmin Karki
{"title":"使用GAN生成尼泊尔手写字母","authors":"Basant Bhandari, Aakash Raj Dhakal, Laxman Maharjan, Asmin Karki","doi":"10.3126/jsce.v9i9.46308","DOIUrl":null,"url":null,"abstract":"The generative adversarial networks seem to work very effectively for training generative deep neural networks. The aim is to generate Nepali Handwritten letters using adversarial training in raster image format. Deep Convolutional generative network is used to generate Nepali handwritten letters. Proposed generative adversarial model that works on Devanagari 36 classes, each having 10,000 images, generates the Nepali Handwritten Letters that are similar to the real-life data-set of total size 360,000 images. The generated letters are obtained by simultaneously training the generator and discriminator of the network. Constructed discriminator networks and generator networks both have five convolution layers and the activation function is chosen such that generator networks generate the image and discriminator networks check if the generated image is similar to a real-life image dataset. To measure the quantitative performance, Frechet Inception Distance (FID) methodology is used. The FID value of 18 random samples, generated by networks constructed, is 38413677.145. For a qualitative measure of the model let the reader judge the quality of the image generated by the generator trained model. The Nepali letters were generated by the adversarial network as required. The evaluation helps the generative model to be better and further enables a better generation that humans have not thought of.","PeriodicalId":36368,"journal":{"name":"AIUB Journal of Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nepali Handwritten Letter Generation using GAN\",\"authors\":\"Basant Bhandari, Aakash Raj Dhakal, Laxman Maharjan, Asmin Karki\",\"doi\":\"10.3126/jsce.v9i9.46308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generative adversarial networks seem to work very effectively for training generative deep neural networks. The aim is to generate Nepali Handwritten letters using adversarial training in raster image format. Deep Convolutional generative network is used to generate Nepali handwritten letters. Proposed generative adversarial model that works on Devanagari 36 classes, each having 10,000 images, generates the Nepali Handwritten Letters that are similar to the real-life data-set of total size 360,000 images. The generated letters are obtained by simultaneously training the generator and discriminator of the network. Constructed discriminator networks and generator networks both have five convolution layers and the activation function is chosen such that generator networks generate the image and discriminator networks check if the generated image is similar to a real-life image dataset. To measure the quantitative performance, Frechet Inception Distance (FID) methodology is used. The FID value of 18 random samples, generated by networks constructed, is 38413677.145. For a qualitative measure of the model let the reader judge the quality of the image generated by the generator trained model. The Nepali letters were generated by the adversarial network as required. The evaluation helps the generative model to be better and further enables a better generation that humans have not thought of.\",\"PeriodicalId\":36368,\"journal\":{\"name\":\"AIUB Journal of Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIUB Journal of Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jsce.v9i9.46308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jsce.v9i9.46308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

生成对抗网络似乎对训练生成深度神经网络非常有效。目的是使用光栅图像格式的对抗性训练生成尼泊尔手写字母。使用深度卷积生成网络生成尼泊尔语手写字母。提出的生成对抗模型在Devanagari 36个类上工作,每个类有10,000张图像,生成的尼泊尔手写字母与现实生活中总大小为360,000张图像的数据集相似。通过同时训练网络的生成器和鉴别器来获得生成的字母。构建的鉴别器网络和生成器网络都有五个卷积层,激活函数的选择使得生成器网络生成图像,鉴别器网络检查生成的图像是否与现实生活中的图像数据集相似。为了测量定量性能,使用了Frechet Inception Distance (FID)方法。构建网络生成的18个随机样本的FID值为38413677.145。对于模型的定性度量,让读者判断由生成器训练的模型生成的图像的质量。尼泊尔语字母是由对抗性网络按要求生成的。评价有助于生成模型变得更好,进一步实现人类没有想到的更好的一代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nepali Handwritten Letter Generation using GAN
The generative adversarial networks seem to work very effectively for training generative deep neural networks. The aim is to generate Nepali Handwritten letters using adversarial training in raster image format. Deep Convolutional generative network is used to generate Nepali handwritten letters. Proposed generative adversarial model that works on Devanagari 36 classes, each having 10,000 images, generates the Nepali Handwritten Letters that are similar to the real-life data-set of total size 360,000 images. The generated letters are obtained by simultaneously training the generator and discriminator of the network. Constructed discriminator networks and generator networks both have five convolution layers and the activation function is chosen such that generator networks generate the image and discriminator networks check if the generated image is similar to a real-life image dataset. To measure the quantitative performance, Frechet Inception Distance (FID) methodology is used. The FID value of 18 random samples, generated by networks constructed, is 38413677.145. For a qualitative measure of the model let the reader judge the quality of the image generated by the generator trained model. The Nepali letters were generated by the adversarial network as required. The evaluation helps the generative model to be better and further enables a better generation that humans have not thought of.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIUB Journal of Science and Engineering
AIUB Journal of Science and Engineering Mathematics-Mathematics (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
3
期刊最新文献
STUDI KARAKTERISTIK ASPAL BUTON DAERAH KABUNGKA KECAMATAN PASARWAJO KABUPATEN BUTON, SULAWESI TENGGARA DITRIBUSI PERGERAKAN PENUMPANG MENGGUNAKAN KAPAL FEERY DENGAN METODE DETROIT DI PROVINSI MALUKU UTARA STUDI INTERPRETASI LAPISAN BAWAH PERMUKAAN TANAH DENGAN METODE GEOLISTRIK DI JALAN LINTAS SUBAIM-BULI KECAMATAN WASILE TIMUR KABUPATEN HALMAHERA TIMUR convoHER2: A Deep Neural Network for Multi-Stage Classification of HER2 Breast Cancer ANALISIS SISTEM PENYARINGAN AIR BERSIH PADA AIR SUMUR WARGA DI KELURAHAN FITU KOTA TERNATE SELATAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1