A. Phommahaxay, S. Suhard, P. Bex, S. Iacovo, J. Slabbekoorn, F. Inoue, Lan Peng, K. Kennes, E. Sleeckx, G. Beyer, E. Beyne
{"title":"实现未来异质集成系统的超薄晶圆混合键合","authors":"A. Phommahaxay, S. Suhard, P. Bex, S. Iacovo, J. Slabbekoorn, F. Inoue, Lan Peng, K. Kennes, E. Sleeckx, G. Beyer, E. Beyne","doi":"10.1109/ECTC.2019.00097","DOIUrl":null,"url":null,"abstract":"The recent developments of wafer-to-wafer bonding technology based on direct assembly of inorganic dielectric materials is offering a path for the continuous need for higher integration density and lower interconnect pitches. However, numerous applications could benefit of a higher degree of design flexibility offered by a die-to-wafer approach. The achievement of high yielding die-to-wafer bonding with micron range die overlay is an essential element to unlock the potential of heterogeneous integration.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"AES-15 1","pages":"607-613"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Enabling Ultra-Thin Die to Wafer Hybrid Bonding for Future Heterogeneous Integrated Systems\",\"authors\":\"A. Phommahaxay, S. Suhard, P. Bex, S. Iacovo, J. Slabbekoorn, F. Inoue, Lan Peng, K. Kennes, E. Sleeckx, G. Beyer, E. Beyne\",\"doi\":\"10.1109/ECTC.2019.00097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent developments of wafer-to-wafer bonding technology based on direct assembly of inorganic dielectric materials is offering a path for the continuous need for higher integration density and lower interconnect pitches. However, numerous applications could benefit of a higher degree of design flexibility offered by a die-to-wafer approach. The achievement of high yielding die-to-wafer bonding with micron range die overlay is an essential element to unlock the potential of heterogeneous integration.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"AES-15 1\",\"pages\":\"607-613\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling Ultra-Thin Die to Wafer Hybrid Bonding for Future Heterogeneous Integrated Systems
The recent developments of wafer-to-wafer bonding technology based on direct assembly of inorganic dielectric materials is offering a path for the continuous need for higher integration density and lower interconnect pitches. However, numerous applications could benefit of a higher degree of design flexibility offered by a die-to-wafer approach. The achievement of high yielding die-to-wafer bonding with micron range die overlay is an essential element to unlock the potential of heterogeneous integration.