H. Sumi, H. Takehara, Shunsuke Miyazaki, Daiki Shirahige, K. Sasagawa, T. Tokuda, Yoshihiro Watanabe, N. Kishi, J. Ohta, M. Ishikawa
{"title":"采用1.12微米平方像素、4K、30帧/秒的BSI CMOS图像传感器和先进的近红外多光谱成像系统,实现0-lx可见光全彩色图像采集的下一代眼底相机","authors":"H. Sumi, H. Takehara, Shunsuke Miyazaki, Daiki Shirahige, K. Sasagawa, T. Tokuda, Yoshihiro Watanabe, N. Kishi, J. Ohta, M. Ishikawa","doi":"10.1109/VLSIT.2018.8510698","DOIUrl":null,"url":null,"abstract":"This paper presents a near-infrared (NIR) multi-spectral imaging system, which can be applied to a CMOS image sensor with fine pixels. Using the multi-spectral technology, NIR1: near 800 nm, NIR2: 870 nm, and NIR3: 940 nm in the NIR wavelength were acquired for a target image. Using this image sensor and imaging system and with the application of interpolation and color correction processing, a color image is reproduced by only multi-NIR signal without visible light (0 lx). We also developed a next-generation fundus camera, which employed this multi-spectral imaging system with a multi-NIR LED illuminator. This multi-NIR LED illumination system, which was also developed, is designed to emit light with high efficiency despite its size of 2.3 mm square in size. We applied this NIR multi-spectral camera module with the multi-NIR LED illuminator to the next-generation fundus camera; the retinal pigment appears progressively more transparent, revealing the underlying choroid.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"275 1","pages":"163-164"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Next-generation Fundus Camera with Full Color Image Acquisition in 0-lx Visible Light by 1.12-micron Square Pixel, 4K, 30-fps BSI CMOS Image Sensor with Advanced NIR Multi-spectral Imaging System\",\"authors\":\"H. Sumi, H. Takehara, Shunsuke Miyazaki, Daiki Shirahige, K. Sasagawa, T. Tokuda, Yoshihiro Watanabe, N. Kishi, J. Ohta, M. Ishikawa\",\"doi\":\"10.1109/VLSIT.2018.8510698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a near-infrared (NIR) multi-spectral imaging system, which can be applied to a CMOS image sensor with fine pixels. Using the multi-spectral technology, NIR1: near 800 nm, NIR2: 870 nm, and NIR3: 940 nm in the NIR wavelength were acquired for a target image. Using this image sensor and imaging system and with the application of interpolation and color correction processing, a color image is reproduced by only multi-NIR signal without visible light (0 lx). We also developed a next-generation fundus camera, which employed this multi-spectral imaging system with a multi-NIR LED illuminator. This multi-NIR LED illumination system, which was also developed, is designed to emit light with high efficiency despite its size of 2.3 mm square in size. We applied this NIR multi-spectral camera module with the multi-NIR LED illuminator to the next-generation fundus camera; the retinal pigment appears progressively more transparent, revealing the underlying choroid.\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"275 1\",\"pages\":\"163-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Next-generation Fundus Camera with Full Color Image Acquisition in 0-lx Visible Light by 1.12-micron Square Pixel, 4K, 30-fps BSI CMOS Image Sensor with Advanced NIR Multi-spectral Imaging System
This paper presents a near-infrared (NIR) multi-spectral imaging system, which can be applied to a CMOS image sensor with fine pixels. Using the multi-spectral technology, NIR1: near 800 nm, NIR2: 870 nm, and NIR3: 940 nm in the NIR wavelength were acquired for a target image. Using this image sensor and imaging system and with the application of interpolation and color correction processing, a color image is reproduced by only multi-NIR signal without visible light (0 lx). We also developed a next-generation fundus camera, which employed this multi-spectral imaging system with a multi-NIR LED illuminator. This multi-NIR LED illumination system, which was also developed, is designed to emit light with high efficiency despite its size of 2.3 mm square in size. We applied this NIR multi-spectral camera module with the multi-NIR LED illuminator to the next-generation fundus camera; the retinal pigment appears progressively more transparent, revealing the underlying choroid.