{"title":"等原子Co-Cr-Fe-Mn-Ni高熵合金氢辅助疲劳裂纹扩展行为","authors":"H. Xiao, Q. Zeng, Lin Xia, Z. Fu, Shaowei Zhu","doi":"10.1002/maco.202112866","DOIUrl":null,"url":null,"abstract":"The equiatomic Co–Cr–Fe–Mn–Ni high‐entropy alloy (HEA) shows well hydrogen embrittlement resistance under monotonic tensile load. However, the fracture behavior under cyclic load is still unclear. In this study, combining with the fracture features analysis by electron back‐scattered diffraction and electron channeling contrast imaging techniques, the hydrogen‐assisted fatigue crack propagation behavior of equiatomic Co–Cr–Fe–Mn–Ni HEA under in situ electrochemical hydrogen charging was investigated. The results suggest that the hydrogen had significant accelerating effects on the fatigue crack growth rate of Co–Cr–Fe–Mn–Ni HEA. Intergranular cracking with the formation of dislocation cells was observed at low stress intensity range (ΔK) area, while transgranular cracking with deformation twins was observed at a high ΔK area. The formation of these deformation features was assisted by hydrogen‐assisted dislocation emission.","PeriodicalId":18223,"journal":{"name":"Materials and Corrosion","volume":"16 12 1","pages":"550 - 557"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hydrogen‐assisted fatigue crack propagation behavior of equiatomic Co–Cr–Fe–Mn–Ni high‐entropy alloy\",\"authors\":\"H. Xiao, Q. Zeng, Lin Xia, Z. Fu, Shaowei Zhu\",\"doi\":\"10.1002/maco.202112866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The equiatomic Co–Cr–Fe–Mn–Ni high‐entropy alloy (HEA) shows well hydrogen embrittlement resistance under monotonic tensile load. However, the fracture behavior under cyclic load is still unclear. In this study, combining with the fracture features analysis by electron back‐scattered diffraction and electron channeling contrast imaging techniques, the hydrogen‐assisted fatigue crack propagation behavior of equiatomic Co–Cr–Fe–Mn–Ni HEA under in situ electrochemical hydrogen charging was investigated. The results suggest that the hydrogen had significant accelerating effects on the fatigue crack growth rate of Co–Cr–Fe–Mn–Ni HEA. Intergranular cracking with the formation of dislocation cells was observed at low stress intensity range (ΔK) area, while transgranular cracking with deformation twins was observed at a high ΔK area. The formation of these deformation features was assisted by hydrogen‐assisted dislocation emission.\",\"PeriodicalId\":18223,\"journal\":{\"name\":\"Materials and Corrosion\",\"volume\":\"16 12 1\",\"pages\":\"550 - 557\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/maco.202112866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/maco.202112866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogen‐assisted fatigue crack propagation behavior of equiatomic Co–Cr–Fe–Mn–Ni high‐entropy alloy
The equiatomic Co–Cr–Fe–Mn–Ni high‐entropy alloy (HEA) shows well hydrogen embrittlement resistance under monotonic tensile load. However, the fracture behavior under cyclic load is still unclear. In this study, combining with the fracture features analysis by electron back‐scattered diffraction and electron channeling contrast imaging techniques, the hydrogen‐assisted fatigue crack propagation behavior of equiatomic Co–Cr–Fe–Mn–Ni HEA under in situ electrochemical hydrogen charging was investigated. The results suggest that the hydrogen had significant accelerating effects on the fatigue crack growth rate of Co–Cr–Fe–Mn–Ni HEA. Intergranular cracking with the formation of dislocation cells was observed at low stress intensity range (ΔK) area, while transgranular cracking with deformation twins was observed at a high ΔK area. The formation of these deformation features was assisted by hydrogen‐assisted dislocation emission.