高温条件下,冠冷处理可使草莓花芽提前分化

Q3 Agricultural and Biological Sciences Environmental Control in Biology Pub Date : 2017-01-01 DOI:10.2525/ECB.55.21
K. Hidaka, K. Dan, H. Imamura, T. Takayama
{"title":"高温条件下,冠冷处理可使草莓花芽提前分化","authors":"K. Hidaka, K. Dan, H. Imamura, T. Takayama","doi":"10.2525/ECB.55.21","DOIUrl":null,"url":null,"abstract":"Over 90% of Japanese strawberry farmers employ forcing to enable harvest from winter to the following spring (Yamasaki, 2013). However, because available production area continues to decline, new techniques to obtain consistently high yields are required. Many factors contribute to fruit yield in strawberry production (Hidaka et al., 2014a). Fruit yield per plant is influenced by factors including per unit fruit weight, fruit number, flower budding, photosynthate partitioning, leaf photosynthesis, and water and nutrient uptake by roots. These factors are affected by the growing environment (e.g., light intensity, photoperiod, temperature, CO2 concentration, humidity, and wind velocity) and the genetic potential of each cultivar. In our previous studies, we explored the development of environmental control techniques, such as supplemental lighting and CO2 enrichment, to achieve high increases in fruits yield through acceleration of leaf photosynthesis (Hidaka et al., 2013; 2014b; 2015; 2016). However, seeking to increase yields through environmental controls relies on the assumption that flower bud differentiation will be induced normally. Global warming has recently been reported to have serious potential impacts on water resources, ecosystems, food production and other aspects of life. The Japanese Ministry of Agriculture, Forestry and Fisheries has reported on agricultural issues already known to result from global warming, including high-temperature-related injuries to rice (cracked rice), abnormal fruit coloration, changes in fruit growing zones, and increased incidences of pests and disease (2008). Further, effects of recent warming on agricultural production have been observed throughout the whole of Japan (Sugiura et al., 2012). Japanese strawberry producers usually use Junebearing cultivars, and flower bud differentiation in these cultivars is induced by short days and low temperatures (Ito and Saito, 1962). However, recently there have been concerns that rising air temperatures in August and September will cause delayed flower bud differentiation in first inflorescences. Many types of localized temperature control systems have been developed to stabilize flower bud differentiation under high-temperature conditions (Mukai and Ogura, 1988; Ikeda et al., 2007; Yamazaki et al., 2007; Miyoshi et al., 2013). Our research group also developed a technique to control the temperature of the strawberry crown, which is the organ containing the shoot apical meristem (Dan et al., 2015). However, few studies have examined the effect of such cooling systems under the high temperatures expected with future global warming. We calculated likely future air temperatures in the study area based on past recorded temperatures and predictions of future global warming and reproduced these temperature conditions in a greenhouse. We examined the effect of crown-cooling treatments on flower bud differentiation, flowering characteristics and yield under high air temperature with the aim of achieving stable future production of strawberry.","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Crown-cooling Treatment Induces Earlier Flower Bud Differentiation of Strawberry under High Air Temperatures\",\"authors\":\"K. Hidaka, K. Dan, H. Imamura, T. Takayama\",\"doi\":\"10.2525/ECB.55.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over 90% of Japanese strawberry farmers employ forcing to enable harvest from winter to the following spring (Yamasaki, 2013). However, because available production area continues to decline, new techniques to obtain consistently high yields are required. Many factors contribute to fruit yield in strawberry production (Hidaka et al., 2014a). Fruit yield per plant is influenced by factors including per unit fruit weight, fruit number, flower budding, photosynthate partitioning, leaf photosynthesis, and water and nutrient uptake by roots. These factors are affected by the growing environment (e.g., light intensity, photoperiod, temperature, CO2 concentration, humidity, and wind velocity) and the genetic potential of each cultivar. In our previous studies, we explored the development of environmental control techniques, such as supplemental lighting and CO2 enrichment, to achieve high increases in fruits yield through acceleration of leaf photosynthesis (Hidaka et al., 2013; 2014b; 2015; 2016). However, seeking to increase yields through environmental controls relies on the assumption that flower bud differentiation will be induced normally. Global warming has recently been reported to have serious potential impacts on water resources, ecosystems, food production and other aspects of life. The Japanese Ministry of Agriculture, Forestry and Fisheries has reported on agricultural issues already known to result from global warming, including high-temperature-related injuries to rice (cracked rice), abnormal fruit coloration, changes in fruit growing zones, and increased incidences of pests and disease (2008). Further, effects of recent warming on agricultural production have been observed throughout the whole of Japan (Sugiura et al., 2012). Japanese strawberry producers usually use Junebearing cultivars, and flower bud differentiation in these cultivars is induced by short days and low temperatures (Ito and Saito, 1962). However, recently there have been concerns that rising air temperatures in August and September will cause delayed flower bud differentiation in first inflorescences. Many types of localized temperature control systems have been developed to stabilize flower bud differentiation under high-temperature conditions (Mukai and Ogura, 1988; Ikeda et al., 2007; Yamazaki et al., 2007; Miyoshi et al., 2013). Our research group also developed a technique to control the temperature of the strawberry crown, which is the organ containing the shoot apical meristem (Dan et al., 2015). However, few studies have examined the effect of such cooling systems under the high temperatures expected with future global warming. We calculated likely future air temperatures in the study area based on past recorded temperatures and predictions of future global warming and reproduced these temperature conditions in a greenhouse. We examined the effect of crown-cooling treatments on flower bud differentiation, flowering characteristics and yield under high air temperature with the aim of achieving stable future production of strawberry.\",\"PeriodicalId\":11762,\"journal\":{\"name\":\"Environmental Control in Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Control in Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2525/ECB.55.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Control in Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2525/ECB.55.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 14

摘要

超过90%的日本草莓种植者采用催收方式,从冬季到次年春季都能收获(Yamasaki, 2013)。然而,由于可用的生产面积持续减少,需要新的技术来获得持续的高产量。在草莓生产中,影响果实产量的因素很多(Hidaka et al., 2014a)。单株产量受单果重、果数、出芽、光合作用分配、叶片光合作用以及根系对水分和养分的吸收等因素的影响。这些因素受生长环境(如光照强度、光周期、温度、CO2浓度、湿度和风速)和各品种遗传潜力的影响。在我们之前的研究中,我们探索了环境控制技术的发展,如补充照明和CO2富集,通过加速叶片光合作用来实现果实产量的高增长(Hidaka et al., 2013;2014 b;2015;2016)。然而,寻求通过环境控制提高产量依赖于花芽分化将被正常诱导的假设。最近有报道称,全球变暖对水资源、生态系统、粮食生产和生活的其他方面产生了严重的潜在影响。日本农林水产省报告了已知由全球变暖造成的农业问题,包括与高温有关的水稻损伤(稻米开裂)、水果颜色异常、水果种植区域的变化以及病虫害发生率的增加(2008年)。此外,近期变暖对整个日本农业生产的影响已经观察到(Sugiura et al., 2012)。日本草莓生产者通常使用六月产的品种,这些品种的花芽分化是由短日和低温诱导的(Ito和Saito, 1962)。然而,最近有人担心,8月和9月的气温上升会导致第一花序的花芽分化延迟。许多类型的局部温度控制系统已经开发出来,以稳定高温条件下花芽的分化(Mukai和Ogura, 1988;Ikeda et al., 2007;Yamazaki et al., 2007;Miyoshi et al., 2013)。我们的研究小组还开发了一种技术来控制草莓冠的温度,冠是包含茎尖分生组织的器官(Dan et al., 2015)。然而,很少有研究调查了这种冷却系统在未来全球变暖预计的高温下的影响。我们根据过去记录的温度和对未来全球变暖的预测计算了研究区域未来可能的气温,并在温室中重现了这些温度条件。研究了高温条件下冠冷处理对草莓花芽分化、开花特性和产量的影响,以期实现草莓的稳定生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crown-cooling Treatment Induces Earlier Flower Bud Differentiation of Strawberry under High Air Temperatures
Over 90% of Japanese strawberry farmers employ forcing to enable harvest from winter to the following spring (Yamasaki, 2013). However, because available production area continues to decline, new techniques to obtain consistently high yields are required. Many factors contribute to fruit yield in strawberry production (Hidaka et al., 2014a). Fruit yield per plant is influenced by factors including per unit fruit weight, fruit number, flower budding, photosynthate partitioning, leaf photosynthesis, and water and nutrient uptake by roots. These factors are affected by the growing environment (e.g., light intensity, photoperiod, temperature, CO2 concentration, humidity, and wind velocity) and the genetic potential of each cultivar. In our previous studies, we explored the development of environmental control techniques, such as supplemental lighting and CO2 enrichment, to achieve high increases in fruits yield through acceleration of leaf photosynthesis (Hidaka et al., 2013; 2014b; 2015; 2016). However, seeking to increase yields through environmental controls relies on the assumption that flower bud differentiation will be induced normally. Global warming has recently been reported to have serious potential impacts on water resources, ecosystems, food production and other aspects of life. The Japanese Ministry of Agriculture, Forestry and Fisheries has reported on agricultural issues already known to result from global warming, including high-temperature-related injuries to rice (cracked rice), abnormal fruit coloration, changes in fruit growing zones, and increased incidences of pests and disease (2008). Further, effects of recent warming on agricultural production have been observed throughout the whole of Japan (Sugiura et al., 2012). Japanese strawberry producers usually use Junebearing cultivars, and flower bud differentiation in these cultivars is induced by short days and low temperatures (Ito and Saito, 1962). However, recently there have been concerns that rising air temperatures in August and September will cause delayed flower bud differentiation in first inflorescences. Many types of localized temperature control systems have been developed to stabilize flower bud differentiation under high-temperature conditions (Mukai and Ogura, 1988; Ikeda et al., 2007; Yamazaki et al., 2007; Miyoshi et al., 2013). Our research group also developed a technique to control the temperature of the strawberry crown, which is the organ containing the shoot apical meristem (Dan et al., 2015). However, few studies have examined the effect of such cooling systems under the high temperatures expected with future global warming. We calculated likely future air temperatures in the study area based on past recorded temperatures and predictions of future global warming and reproduced these temperature conditions in a greenhouse. We examined the effect of crown-cooling treatments on flower bud differentiation, flowering characteristics and yield under high air temperature with the aim of achieving stable future production of strawberry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Control in Biology
Environmental Control in Biology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.00
自引率
0.00%
发文量
25
期刊最新文献
Conjugation of Glucaric Acid in Comparison to Quinic Acid by Caffeic Acid Allows for Enhanced Metabolite Diversification in Bush Tea (<i>Athrixia phylicoides</i> DC.) Extracts Post UV Light Exposure Effect of Citric Acid on the Organogenesis of <i>Cymbidium floribundum</i> Development of a Male-Sterile Line of Eggplant Utilizing the Cytoplasm of <i>Solanum aethiopicum</i> Gilo Group Continuous Measurement of Greenhouse Ventilation Rate in Summer and Autumn via Heat and Water Vapor Balance Methods Postharvest Shelf-life Extension of Button Mushroom (Agaricus bisporus L.) by Aloe vera Gel Coating Enriched with Basil Essential Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1