{"title":"CuInSe/ sub2 /太阳能电池器件分析","authors":"K. Mitchell, H.I. Liu","doi":"10.1109/PVSC.1988.105952","DOIUrl":null,"url":null,"abstract":"Analyses are presented of greater than 12% efficient ZnO/thin CdS/CIS devices, focusing on spectral response and light and dark current-voltage (I-V) over a broad range of intensities (0.64-100 mW/cm/sup 2/) and temperatures (100-300 K). Other measurements presented include voltage-dependent spectral response, capacitance-conductance versus voltage, frequency, temperature, and CIS film and contact resistance. It is found that recombination controls device performance above 200 K and tunneling and series resistance dominate low-temperature device behavior. 14.1%, 3.5 cm/sup 2/ active area cell and 11.2%, 938 cm/sup 2/ module aperture area efficiencies are reported.<<ETX>>","PeriodicalId":10562,"journal":{"name":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","volume":"26 1","pages":"1461-1468 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Device analysis of CuInSe/sub 2/ solar cells\",\"authors\":\"K. Mitchell, H.I. Liu\",\"doi\":\"10.1109/PVSC.1988.105952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyses are presented of greater than 12% efficient ZnO/thin CdS/CIS devices, focusing on spectral response and light and dark current-voltage (I-V) over a broad range of intensities (0.64-100 mW/cm/sup 2/) and temperatures (100-300 K). Other measurements presented include voltage-dependent spectral response, capacitance-conductance versus voltage, frequency, temperature, and CIS film and contact resistance. It is found that recombination controls device performance above 200 K and tunneling and series resistance dominate low-temperature device behavior. 14.1%, 3.5 cm/sup 2/ active area cell and 11.2%, 938 cm/sup 2/ module aperture area efficiencies are reported.<<ETX>>\",\"PeriodicalId\":10562,\"journal\":{\"name\":\"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference\",\"volume\":\"26 1\",\"pages\":\"1461-1468 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.1988.105952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1988.105952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyses are presented of greater than 12% efficient ZnO/thin CdS/CIS devices, focusing on spectral response and light and dark current-voltage (I-V) over a broad range of intensities (0.64-100 mW/cm/sup 2/) and temperatures (100-300 K). Other measurements presented include voltage-dependent spectral response, capacitance-conductance versus voltage, frequency, temperature, and CIS film and contact resistance. It is found that recombination controls device performance above 200 K and tunneling and series resistance dominate low-temperature device behavior. 14.1%, 3.5 cm/sup 2/ active area cell and 11.2%, 938 cm/sup 2/ module aperture area efficiencies are reported.<>