用于移动和3D高端封装的新型系统级封装技术(ICE-SiP)的散热特性

Taejoo Hwang, D. Oh, Jaechoon Kim, Euseok Song, Taehun Kim, Kilsoo Kim, Joungphil Lee, Taehwan Kim
{"title":"用于移动和3D高端封装的新型系统级封装技术(ICE-SiP)的散热特性","authors":"Taejoo Hwang, D. Oh, Jaechoon Kim, Euseok Song, Taehun Kim, Kilsoo Kim, Joungphil Lee, Taehwan Kim","doi":"10.1109/ECTC.2019.00098","DOIUrl":null,"url":null,"abstract":"As information technologies evolve with the 4th industry revolution, such as artificial intelligence and 5G mobile communication, much more computing power and data bandwidth are required for both mobile and server systems. However, one-dimensional thermal packaging solutions such as a heat spreader or high conductive materials are not sufficient to solve the heat dissipation problems for the system-in-packages. In this research, a novel thermal dissipation technology based on two-dimensional heat flow was studied for the 5G high thermal power system-in-package modems and high performance computing logics. By applying a high thermal conductive material such as silver paste to conventional epoxy mold compound structures and creating direct high thermal dissipation paths from a bottom logic die to the heat spreader, it can bypass memory die that is more sensitive to the temperature rise than the logic die. The thermal performance of this novel technology was demonstrated using actual 5G modem system-in-packages comprised of a modem and two LPDDR4x dice. In conclusion, two-dimensional heat dissipation technique using thermal chimney is effective to reduce thermal crosstalk between top memory and bottom logic dice. Consequently, the overall system thermal performance was able to be improved by reducing heat flow through top memory dice.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"21 1","pages":"614-619"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Thermal Dissipation Characteristics of The Novel System-In-Package Technology (ICE-SiP) for Mobile and 3D High-end Packages\",\"authors\":\"Taejoo Hwang, D. Oh, Jaechoon Kim, Euseok Song, Taehun Kim, Kilsoo Kim, Joungphil Lee, Taehwan Kim\",\"doi\":\"10.1109/ECTC.2019.00098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As information technologies evolve with the 4th industry revolution, such as artificial intelligence and 5G mobile communication, much more computing power and data bandwidth are required for both mobile and server systems. However, one-dimensional thermal packaging solutions such as a heat spreader or high conductive materials are not sufficient to solve the heat dissipation problems for the system-in-packages. In this research, a novel thermal dissipation technology based on two-dimensional heat flow was studied for the 5G high thermal power system-in-package modems and high performance computing logics. By applying a high thermal conductive material such as silver paste to conventional epoxy mold compound structures and creating direct high thermal dissipation paths from a bottom logic die to the heat spreader, it can bypass memory die that is more sensitive to the temperature rise than the logic die. The thermal performance of this novel technology was demonstrated using actual 5G modem system-in-packages comprised of a modem and two LPDDR4x dice. In conclusion, two-dimensional heat dissipation technique using thermal chimney is effective to reduce thermal crosstalk between top memory and bottom logic dice. Consequently, the overall system thermal performance was able to be improved by reducing heat flow through top memory dice.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"21 1\",\"pages\":\"614-619\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着人工智能、5G移动通信等第四次工业革命带来的信息技术的发展,移动和服务器系统都需要更多的计算能力和数据带宽。然而,一维的热封装解决方案,如散热器或高导电性材料,不足以解决系统级封装的散热问题。本文研究了一种基于二维热流的新型5G高热功率系统级调制解调器和高性能计算逻辑散热技术。通过在传统的环氧模复合结构上应用银膏等高导热材料,并从底部逻辑模到散热片之间建立直接的高散热路径,可以绕过比逻辑模对温升更敏感的记忆模。这项新技术的热性能通过实际的5G调制解调器系统级封装进行了演示,该系统级封装由一个调制解调器和两个LPDDR4x骰子组成。综上所述,利用热烟囱的二维散热技术可以有效地减少顶部存储器和底部逻辑骰子之间的热串扰。因此,整个系统的热性能能够通过减少热流通过顶部存储骰子得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Thermal Dissipation Characteristics of The Novel System-In-Package Technology (ICE-SiP) for Mobile and 3D High-end Packages
As information technologies evolve with the 4th industry revolution, such as artificial intelligence and 5G mobile communication, much more computing power and data bandwidth are required for both mobile and server systems. However, one-dimensional thermal packaging solutions such as a heat spreader or high conductive materials are not sufficient to solve the heat dissipation problems for the system-in-packages. In this research, a novel thermal dissipation technology based on two-dimensional heat flow was studied for the 5G high thermal power system-in-package modems and high performance computing logics. By applying a high thermal conductive material such as silver paste to conventional epoxy mold compound structures and creating direct high thermal dissipation paths from a bottom logic die to the heat spreader, it can bypass memory die that is more sensitive to the temperature rise than the logic die. The thermal performance of this novel technology was demonstrated using actual 5G modem system-in-packages comprised of a modem and two LPDDR4x dice. In conclusion, two-dimensional heat dissipation technique using thermal chimney is effective to reduce thermal crosstalk between top memory and bottom logic dice. Consequently, the overall system thermal performance was able to be improved by reducing heat flow through top memory dice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further Enhancement of Thermal Conductivity through Optimal Uses of h-BN Fillers in Polymer-Based Thermal Interface Material for Power Electronics A Novel Design of a Bandwidth Enhanced Dual-Band Impedance Matching Network with Coupled Line Wave Slowing A New Development of Direct Bonding to Aluminum and Nickel Surfaces by Silver Sintering in air Atmosphere Signal Integrity of Submicron InFO Heterogeneous Integration for High Performance Computing Applications Multilayer Glass Substrate with High Density Via Structure for All Inorganic Multi-chip Module
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1