{"title":"嵌入式应用的无源聚集硬件粒子群优化","authors":"D. Muñoz, C. Llanos, L. Coelho, M. Ayala-Rincón","doi":"10.1109/SPL.2011.5782644","DOIUrl":null,"url":null,"abstract":"Achieving high performance optimization algorithms for embedded applications can be very challenging, particularly when several requirements such as high accuracy computations, short elapsed time, area cost, low power consumption and portability must be accomplished. This paper proposes a hardware implementation of the Particle Swarm Optimization algorithm with passive congregation (HPPSOpc), which was developed using several floating-point arithmetic libraries. The passive congregation is a biological behavior which allows the swarm to preserve its integrity, balancing between global and local search. The HPPSOpc architecture was implemented on a Virtex5 FPGA device and validated using two multimodal benchmark problems. Synthesis, simulation and execution time results demonstrates that the passive congregation approach is a low cost solution for solving embedded optimization problems with a high performance.","PeriodicalId":6329,"journal":{"name":"2011 VII Southern Conference on Programmable Logic (SPL)","volume":"26 1","pages":"173-178"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Hardware Particle Swarm Optimization with passive congregation for embedded applications\",\"authors\":\"D. Muñoz, C. Llanos, L. Coelho, M. Ayala-Rincón\",\"doi\":\"10.1109/SPL.2011.5782644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving high performance optimization algorithms for embedded applications can be very challenging, particularly when several requirements such as high accuracy computations, short elapsed time, area cost, low power consumption and portability must be accomplished. This paper proposes a hardware implementation of the Particle Swarm Optimization algorithm with passive congregation (HPPSOpc), which was developed using several floating-point arithmetic libraries. The passive congregation is a biological behavior which allows the swarm to preserve its integrity, balancing between global and local search. The HPPSOpc architecture was implemented on a Virtex5 FPGA device and validated using two multimodal benchmark problems. Synthesis, simulation and execution time results demonstrates that the passive congregation approach is a low cost solution for solving embedded optimization problems with a high performance.\",\"PeriodicalId\":6329,\"journal\":{\"name\":\"2011 VII Southern Conference on Programmable Logic (SPL)\",\"volume\":\"26 1\",\"pages\":\"173-178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 VII Southern Conference on Programmable Logic (SPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPL.2011.5782644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 VII Southern Conference on Programmable Logic (SPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPL.2011.5782644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware Particle Swarm Optimization with passive congregation for embedded applications
Achieving high performance optimization algorithms for embedded applications can be very challenging, particularly when several requirements such as high accuracy computations, short elapsed time, area cost, low power consumption and portability must be accomplished. This paper proposes a hardware implementation of the Particle Swarm Optimization algorithm with passive congregation (HPPSOpc), which was developed using several floating-point arithmetic libraries. The passive congregation is a biological behavior which allows the swarm to preserve its integrity, balancing between global and local search. The HPPSOpc architecture was implemented on a Virtex5 FPGA device and validated using two multimodal benchmark problems. Synthesis, simulation and execution time results demonstrates that the passive congregation approach is a low cost solution for solving embedded optimization problems with a high performance.