化学NiP镀层/Cu衬底与SnAg焊料的润湿相互作用

Pei-Lun Hsieh, Kwang-Lung Lin
{"title":"化学NiP镀层/Cu衬底与SnAg焊料的润湿相互作用","authors":"Pei-Lun Hsieh, Kwang-Lung Lin","doi":"10.1109/IMPACT.2011.6117224","DOIUrl":null,"url":null,"abstract":"Electroless NiP deposit has been frequently mentioned as the barrier laer for Cu substrate or metallization for the soldering process. The NiP deposit is solderable with many solders at appropriate temperature and operation condition. The present study attempted to investigate the wetting behavior of the Sn3Ag solder on the electroless NiP with wetting balance at 250°C and 270°C. The cross section of the wetting specimen was further investigated for the interaction and the interfacial microstructure between the solder and the NiP/Cu substrate. The interface was composed of Ni3Sn4 and Ni3P compound layers. A Ni-Sn-P layer was detected between these two compound layers. The thickness of these layers was analyzed for the growth kinetics. The growth of these layers were found to follow an empirical power law log h(thickness) = log k(constant) + n log t(time). The variation in n values was discussed in relating to the growth mechanism of these two layers.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"84 1","pages":"29-32"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The wetting interaction between electroless NiP deposit/Cu substrate and SnAg solder\",\"authors\":\"Pei-Lun Hsieh, Kwang-Lung Lin\",\"doi\":\"10.1109/IMPACT.2011.6117224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroless NiP deposit has been frequently mentioned as the barrier laer for Cu substrate or metallization for the soldering process. The NiP deposit is solderable with many solders at appropriate temperature and operation condition. The present study attempted to investigate the wetting behavior of the Sn3Ag solder on the electroless NiP with wetting balance at 250°C and 270°C. The cross section of the wetting specimen was further investigated for the interaction and the interfacial microstructure between the solder and the NiP/Cu substrate. The interface was composed of Ni3Sn4 and Ni3P compound layers. A Ni-Sn-P layer was detected between these two compound layers. The thickness of these layers was analyzed for the growth kinetics. The growth of these layers were found to follow an empirical power law log h(thickness) = log k(constant) + n log t(time). The variation in n values was discussed in relating to the growth mechanism of these two layers.\",\"PeriodicalId\":6360,\"journal\":{\"name\":\"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)\",\"volume\":\"84 1\",\"pages\":\"29-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPACT.2011.6117224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2011.6117224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化学NiP镀层作为铜衬底的阻挡层或焊接过程中的金属化层经常被提及。在适当的温度和操作条件下,可与多个焊料进行焊接。在250°C和270°C条件下,研究了Sn3Ag钎料在化学NiP上的润湿行为。进一步研究了润湿试样的横截面,以研究焊料与NiP/Cu衬底之间的相互作用和界面微观结构。界面由Ni3Sn4和Ni3P复合层组成。在这两个复合层之间检测到Ni-Sn-P层。对这些层的厚度进行了生长动力学分析。发现这些层的生长遵循经验幂律log h(厚度)= log k(常数)+ n log t(时间)。讨论了n值的变化与这两层生长机制的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The wetting interaction between electroless NiP deposit/Cu substrate and SnAg solder
Electroless NiP deposit has been frequently mentioned as the barrier laer for Cu substrate or metallization for the soldering process. The NiP deposit is solderable with many solders at appropriate temperature and operation condition. The present study attempted to investigate the wetting behavior of the Sn3Ag solder on the electroless NiP with wetting balance at 250°C and 270°C. The cross section of the wetting specimen was further investigated for the interaction and the interfacial microstructure between the solder and the NiP/Cu substrate. The interface was composed of Ni3Sn4 and Ni3P compound layers. A Ni-Sn-P layer was detected between these two compound layers. The thickness of these layers was analyzed for the growth kinetics. The growth of these layers were found to follow an empirical power law log h(thickness) = log k(constant) + n log t(time). The variation in n values was discussed in relating to the growth mechanism of these two layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison the reliability of small plated-through hole with different diameters under thermal stress Co-simulation of capacitive coupling pads assignment for capacitive coupling interconnection applications Microstructure evolution in a sandwich structure of Ni/SnAg/Ni microbump during reflow Comparison among individual thermal cycling, vibration test and the combined test for the life estimation of electronic components Limitations of gluing as a replacement of ultrasonic welding: Attaching Lithium battery contacts to PCBs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1