John P. Mudrick, Jonatan A. Sierra-Suarez, M. Jordan, T. Friedmann, R. Jarecki, M. Henry
{"title":"用于模对模杂交的10微米间距混合直接键合互连开发","authors":"John P. Mudrick, Jonatan A. Sierra-Suarez, M. Jordan, T. Friedmann, R. Jarecki, M. Henry","doi":"10.1109/ECTC.2019.00103","DOIUrl":null,"url":null,"abstract":"Direct bond interconnect (DBI) processes enable chip to chip, low resistivity electrical connections for 2.5-D scaling of electrical circuits and heterogenous integration. This work describes SiO2/Cu DBI technology with Cu interconnect performance investigated over a range of inter-die Cu gap heights and post-bond annealing temperatures. Chemical mechanical polishing (CMP) generates wafers with a controlled Cu recess relative to the SiO2 surface, yielding die pairs with inter-die Cu gap heights ranging between 9 and 47 nm. Bonded die with different gap heights show similar per-connection resistance after annealing at 400 degrees Celsius but annealing at lower temperatures between 250 and 350 degrees Celsius results in failing or high-resistance interconnects with intermediate gaps showing lowest resistance. Cross-section scanning electron microscope (SEM) image analysis shows that the microstructure is largely independent of post-bond annealing temperature, suggesting that the temperature behavior is due to nanoscale scale interfacial effects not observable by SEM. The bond strength is affirmed by successful step-wise mechanical and chemical removal of the handle silicon layer to reveal metal from both die. This work demonstrates a 2.5-D integration method using a 3 micron Cu DBI process on a 7.5 micron pitch with electrical contacts ranging between 3.8 and 4.8 Ohms per contact plug.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"1 1","pages":"648-654"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sub-10µm Pitch Hybrid Direct Bond Interconnect Development for Die-to-Die Hybridization\",\"authors\":\"John P. Mudrick, Jonatan A. Sierra-Suarez, M. Jordan, T. Friedmann, R. Jarecki, M. Henry\",\"doi\":\"10.1109/ECTC.2019.00103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct bond interconnect (DBI) processes enable chip to chip, low resistivity electrical connections for 2.5-D scaling of electrical circuits and heterogenous integration. This work describes SiO2/Cu DBI technology with Cu interconnect performance investigated over a range of inter-die Cu gap heights and post-bond annealing temperatures. Chemical mechanical polishing (CMP) generates wafers with a controlled Cu recess relative to the SiO2 surface, yielding die pairs with inter-die Cu gap heights ranging between 9 and 47 nm. Bonded die with different gap heights show similar per-connection resistance after annealing at 400 degrees Celsius but annealing at lower temperatures between 250 and 350 degrees Celsius results in failing or high-resistance interconnects with intermediate gaps showing lowest resistance. Cross-section scanning electron microscope (SEM) image analysis shows that the microstructure is largely independent of post-bond annealing temperature, suggesting that the temperature behavior is due to nanoscale scale interfacial effects not observable by SEM. The bond strength is affirmed by successful step-wise mechanical and chemical removal of the handle silicon layer to reveal metal from both die. This work demonstrates a 2.5-D integration method using a 3 micron Cu DBI process on a 7.5 micron pitch with electrical contacts ranging between 3.8 and 4.8 Ohms per contact plug.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"1 1\",\"pages\":\"648-654\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub-10µm Pitch Hybrid Direct Bond Interconnect Development for Die-to-Die Hybridization
Direct bond interconnect (DBI) processes enable chip to chip, low resistivity electrical connections for 2.5-D scaling of electrical circuits and heterogenous integration. This work describes SiO2/Cu DBI technology with Cu interconnect performance investigated over a range of inter-die Cu gap heights and post-bond annealing temperatures. Chemical mechanical polishing (CMP) generates wafers with a controlled Cu recess relative to the SiO2 surface, yielding die pairs with inter-die Cu gap heights ranging between 9 and 47 nm. Bonded die with different gap heights show similar per-connection resistance after annealing at 400 degrees Celsius but annealing at lower temperatures between 250 and 350 degrees Celsius results in failing or high-resistance interconnects with intermediate gaps showing lowest resistance. Cross-section scanning electron microscope (SEM) image analysis shows that the microstructure is largely independent of post-bond annealing temperature, suggesting that the temperature behavior is due to nanoscale scale interfacial effects not observable by SEM. The bond strength is affirmed by successful step-wise mechanical and chemical removal of the handle silicon layer to reveal metal from both die. This work demonstrates a 2.5-D integration method using a 3 micron Cu DBI process on a 7.5 micron pitch with electrical contacts ranging between 3.8 and 4.8 Ohms per contact plug.