利用深度学习检测伪造图像

Pranav Sharma, Pooja Santwani, Rachit Narula
{"title":"利用深度学习检测伪造图像","authors":"Pranav Sharma, Pooja Santwani, Rachit Narula","doi":"10.35940/ijeat.a3792.1012122","DOIUrl":null,"url":null,"abstract":"This availability and requirement of data calls for the credibility and authenticity of the data. One such domain is images where tampering creates concern , leading to wide spread of misinformation and fake news. Images are transferred to initiate propagandas on social handles and other platforms. Most of these images are tampered from the authentic original content to allude people and miscommunicate malicious information. In this application, our main work is to modify the existing MobileNetV2 family of neural networks to a more relevant version, so that we can identify and differentiate tampered images from authentic images. We will further create our own convolutional neural network, to create an application which can help us to identify and differentiate tampered images from authentic images and compare our model with MobileNetV2.","PeriodicalId":13981,"journal":{"name":"International Journal of Engineering and Advanced Technology","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Forged Images using Deep Learning\",\"authors\":\"Pranav Sharma, Pooja Santwani, Rachit Narula\",\"doi\":\"10.35940/ijeat.a3792.1012122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This availability and requirement of data calls for the credibility and authenticity of the data. One such domain is images where tampering creates concern , leading to wide spread of misinformation and fake news. Images are transferred to initiate propagandas on social handles and other platforms. Most of these images are tampered from the authentic original content to allude people and miscommunicate malicious information. In this application, our main work is to modify the existing MobileNetV2 family of neural networks to a more relevant version, so that we can identify and differentiate tampered images from authentic images. We will further create our own convolutional neural network, to create an application which can help us to identify and differentiate tampered images from authentic images and compare our model with MobileNetV2.\",\"PeriodicalId\":13981,\"journal\":{\"name\":\"International Journal of Engineering and Advanced Technology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Advanced Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijeat.a3792.1012122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.a3792.1012122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这种数据的可用性和要求要求数据的可信性和真实性。其中一个领域是图像,篡改会引起关注,导致错误信息和假新闻的广泛传播。图片被转移到社交账号和其他平台上进行宣传。这些图片大多是从真实的原始内容中篡改出来的,用来影射人,误传恶意信息。在这个应用中,我们的主要工作是将现有的MobileNetV2系列神经网络修改为一个更相关的版本,这样我们就可以识别和区分篡改图像和真实图像。我们将进一步创建我们自己的卷积神经网络,创建一个应用程序,可以帮助我们识别和区分篡改图像和真实图像,并将我们的模型与MobileNetV2进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Forged Images using Deep Learning
This availability and requirement of data calls for the credibility and authenticity of the data. One such domain is images where tampering creates concern , leading to wide spread of misinformation and fake news. Images are transferred to initiate propagandas on social handles and other platforms. Most of these images are tampered from the authentic original content to allude people and miscommunicate malicious information. In this application, our main work is to modify the existing MobileNetV2 family of neural networks to a more relevant version, so that we can identify and differentiate tampered images from authentic images. We will further create our own convolutional neural network, to create an application which can help us to identify and differentiate tampered images from authentic images and compare our model with MobileNetV2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Car Door Sound Quality Assessment - A Review for NVH Performance Research Airport Runway Crack Detection to Classify and Densify Surface Crack Type Computer-Aided Diagnosis System for Automated Detection of Mri Brain Tumors Smart Artificial Intelligence System for Heart Disease Prediction A Comprehensive Study on Failure Modes and Mechanisms of Thin Film Chip Resistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1