尼龙2,6聚酰胺聚合物在包含旋转反应器的等温外壳中在平面和颗粒基板上的分子层沉积

Tyler J. Myers, S. George
{"title":"尼龙2,6聚酰胺聚合物在包含旋转反应器的等温外壳中在平面和颗粒基板上的分子层沉积","authors":"Tyler J. Myers, S. George","doi":"10.1116/6.0001162","DOIUrl":null,"url":null,"abstract":"Polyamide thin films, designated Nylon 2,6, were grown on flat and particle substrates using molecular layer deposition (MLD) in a custom-built isothermal enclosure containing a rotary reactor. The polyamide films were grown using sequential exposures of ethylene diamine and adipoyl chloride. The reactor and precursors were contained in a fiberglass oven to keep all reactor components at the same temperature. A growth rate of 4.0 A/cycle at 67 °C was determined on flat substrates with ex situ x-ray reflectivity and spectroscopic ellipsometry. The temperature dependence of the Nylon 2,6 displayed a peak growth rate at 67 °C with decreasing growth rates above and below this temperature. X-ray photoelectron spectroscopy of the polyamide film on flat substrates also revealed an elemental composition consistent with the Nylon 2,6 polymer with a small amount of chlorine in the film. The isothermal reactor allowed MLD to be performed consistently on high surface area particles at low temperatures. Transmission electron microscopy (TEM) images showed growth of the Nylon 2,6 films on ZrO2, cellulose, and metformin particles that was consistent with the growth on witness wafers. The growth of the Nylon 2,6 films was also linear versus the number of MLD cycles. The TEM images displayed reproducible MLD growth on particles of varying size and composition. Fourier transform infrared spectroscopy and energy dispersive spectroscopy were consistent with the expected characteristics of the Nylon 2,6 polyamide film. Nylon 2,6 MLD should find application when low-temperature MLD is needed to coat thermally sensitive substrates such as organic films or pharmaceutical powders.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"62 ","pages":"052405"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Molecular layer deposition of Nylon 2,6 polyamide polymer on flat and particle substrates in an isothermal enclosure containing a rotary reactor\",\"authors\":\"Tyler J. Myers, S. George\",\"doi\":\"10.1116/6.0001162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyamide thin films, designated Nylon 2,6, were grown on flat and particle substrates using molecular layer deposition (MLD) in a custom-built isothermal enclosure containing a rotary reactor. The polyamide films were grown using sequential exposures of ethylene diamine and adipoyl chloride. The reactor and precursors were contained in a fiberglass oven to keep all reactor components at the same temperature. A growth rate of 4.0 A/cycle at 67 °C was determined on flat substrates with ex situ x-ray reflectivity and spectroscopic ellipsometry. The temperature dependence of the Nylon 2,6 displayed a peak growth rate at 67 °C with decreasing growth rates above and below this temperature. X-ray photoelectron spectroscopy of the polyamide film on flat substrates also revealed an elemental composition consistent with the Nylon 2,6 polymer with a small amount of chlorine in the film. The isothermal reactor allowed MLD to be performed consistently on high surface area particles at low temperatures. Transmission electron microscopy (TEM) images showed growth of the Nylon 2,6 films on ZrO2, cellulose, and metformin particles that was consistent with the growth on witness wafers. The growth of the Nylon 2,6 films was also linear versus the number of MLD cycles. The TEM images displayed reproducible MLD growth on particles of varying size and composition. Fourier transform infrared spectroscopy and energy dispersive spectroscopy were consistent with the expected characteristics of the Nylon 2,6 polyamide film. Nylon 2,6 MLD should find application when low-temperature MLD is needed to coat thermally sensitive substrates such as organic films or pharmaceutical powders.\",\"PeriodicalId\":17571,\"journal\":{\"name\":\"Journal of Vacuum Science and Technology\",\"volume\":\"62 \",\"pages\":\"052405\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0001162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

聚酰胺薄膜,命名为尼龙2,6,通过分子层沉积(MLD)在装有旋转反应器的定制等温外壳中在平面和颗粒基底上生长。聚酰胺薄膜的生长使用连续暴露的乙二胺和己二酰氯。反应器和前体被放在玻璃纤维烤箱中,以使所有反应器部件保持相同的温度。利用非原位x射线反射率和光谱椭偏仪测定了在67°C的平面衬底上的生长速率为4.0 A/cycle。尼龙2,6的温度依赖性在67℃时生长速率达到峰值,在此温度以上和以下生长速率下降。x射线光电子能谱分析显示,该聚酰胺薄膜的元素组成与尼龙2,6聚合物一致,薄膜中含有少量氯。等温反应器允许MLD在低温下对高表面积颗粒进行一致的处理。透射电子显微镜(TEM)图像显示尼龙2,6薄膜在ZrO2、纤维素和二甲双胍颗粒上的生长与在见证晶圆上的生长一致。尼龙2,6薄膜的生长也与MLD循环次数呈线性关系。TEM图像显示在不同大小和组成的颗粒上可重现MLD生长。傅里叶变换红外光谱和能量色散光谱与尼龙2,6聚酰胺薄膜的预期特性一致。尼龙2,6 MLD应该找到应用低温MLD需要涂层热敏基材,如有机薄膜或医药粉末。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular layer deposition of Nylon 2,6 polyamide polymer on flat and particle substrates in an isothermal enclosure containing a rotary reactor
Polyamide thin films, designated Nylon 2,6, were grown on flat and particle substrates using molecular layer deposition (MLD) in a custom-built isothermal enclosure containing a rotary reactor. The polyamide films were grown using sequential exposures of ethylene diamine and adipoyl chloride. The reactor and precursors were contained in a fiberglass oven to keep all reactor components at the same temperature. A growth rate of 4.0 A/cycle at 67 °C was determined on flat substrates with ex situ x-ray reflectivity and spectroscopic ellipsometry. The temperature dependence of the Nylon 2,6 displayed a peak growth rate at 67 °C with decreasing growth rates above and below this temperature. X-ray photoelectron spectroscopy of the polyamide film on flat substrates also revealed an elemental composition consistent with the Nylon 2,6 polymer with a small amount of chlorine in the film. The isothermal reactor allowed MLD to be performed consistently on high surface area particles at low temperatures. Transmission electron microscopy (TEM) images showed growth of the Nylon 2,6 films on ZrO2, cellulose, and metformin particles that was consistent with the growth on witness wafers. The growth of the Nylon 2,6 films was also linear versus the number of MLD cycles. The TEM images displayed reproducible MLD growth on particles of varying size and composition. Fourier transform infrared spectroscopy and energy dispersive spectroscopy were consistent with the expected characteristics of the Nylon 2,6 polyamide film. Nylon 2,6 MLD should find application when low-temperature MLD is needed to coat thermally sensitive substrates such as organic films or pharmaceutical powders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interfacial reactivity in the Co/CuO samples as investigated by x-ray photoelectron spectroscopy Modification of discharge sequences to control the random dispersion of flake particles during wafer etching Effect of atomic-scale microstructures on TiZrV non-evaporable getter film activation E-mode AlGaN/GaN HEMTs using p-NiO gates Review on remote phonon scattering in transistors with metal-oxide-semiconductor structures adopting high-k gate dielectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1