{"title":"吡咯-2-羧酸抑制生物膜的形成并抑制单核增生李斯特菌的毒力。","authors":"Yuxi Yue, Kai Zhong, Yanping Wu, Hong Gao","doi":"10.1080/08927014.2023.2235287","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial adhesion and biofilm formation of <i>Listeria monocytogenes</i> on food-contact surfaces result in serious safety concerns. This study aimed to explore the antibiofilm efficacy of pyrrole-2-carboxylic acid (PCA) against <i>L. monocytogenes</i>. Crystal violet staining assay demonstrated that PCA reduced the biofilm biomass of <i>L. monocytogenes</i>. The 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction and flow cytometric assays indicated that PCA attenuated the metabolic activity of <i>L. monocytogenes</i> biofilm together with a decrease in viability. Morphologic observations revealed that PCA exposure collapsed the biofilm architecture. PCA administration of 0.75 mg ml<sup>-1</sup> decreased the excretion of extracellular DNA, protein and polysaccharide by 48.58%, 61.60% and 75.63%, respectively. PCA failed to disperse the mature biofilm, even at 1.5 mg ml<sup>-1</sup>. However, PCA suppressed <i>L. monocytogenes</i> adhesion on common food-contact surfaces. Additionally, PCA exposure suppressed the hemolytic activity of <i>L. monocytogenes.</i> These findings suggested that PCA might serve as an alternative antibiofilm agent to control <i>L. monocytogenes</i> contamination.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrrole-2-carboxylic acid inhibits biofilm formation and suppresses the virulence of <i>Listeria monocytogenes</i>.\",\"authors\":\"Yuxi Yue, Kai Zhong, Yanping Wu, Hong Gao\",\"doi\":\"10.1080/08927014.2023.2235287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial adhesion and biofilm formation of <i>Listeria monocytogenes</i> on food-contact surfaces result in serious safety concerns. This study aimed to explore the antibiofilm efficacy of pyrrole-2-carboxylic acid (PCA) against <i>L. monocytogenes</i>. Crystal violet staining assay demonstrated that PCA reduced the biofilm biomass of <i>L. monocytogenes</i>. The 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction and flow cytometric assays indicated that PCA attenuated the metabolic activity of <i>L. monocytogenes</i> biofilm together with a decrease in viability. Morphologic observations revealed that PCA exposure collapsed the biofilm architecture. PCA administration of 0.75 mg ml<sup>-1</sup> decreased the excretion of extracellular DNA, protein and polysaccharide by 48.58%, 61.60% and 75.63%, respectively. PCA failed to disperse the mature biofilm, even at 1.5 mg ml<sup>-1</sup>. However, PCA suppressed <i>L. monocytogenes</i> adhesion on common food-contact surfaces. Additionally, PCA exposure suppressed the hemolytic activity of <i>L. monocytogenes.</i> These findings suggested that PCA might serve as an alternative antibiofilm agent to control <i>L. monocytogenes</i> contamination.</p>\",\"PeriodicalId\":8898,\"journal\":{\"name\":\"Biofouling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofouling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2023.2235287\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2235287","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Pyrrole-2-carboxylic acid inhibits biofilm formation and suppresses the virulence of Listeria monocytogenes.
Bacterial adhesion and biofilm formation of Listeria monocytogenes on food-contact surfaces result in serious safety concerns. This study aimed to explore the antibiofilm efficacy of pyrrole-2-carboxylic acid (PCA) against L. monocytogenes. Crystal violet staining assay demonstrated that PCA reduced the biofilm biomass of L. monocytogenes. The 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction and flow cytometric assays indicated that PCA attenuated the metabolic activity of L. monocytogenes biofilm together with a decrease in viability. Morphologic observations revealed that PCA exposure collapsed the biofilm architecture. PCA administration of 0.75 mg ml-1 decreased the excretion of extracellular DNA, protein and polysaccharide by 48.58%, 61.60% and 75.63%, respectively. PCA failed to disperse the mature biofilm, even at 1.5 mg ml-1. However, PCA suppressed L. monocytogenes adhesion on common food-contact surfaces. Additionally, PCA exposure suppressed the hemolytic activity of L. monocytogenes. These findings suggested that PCA might serve as an alternative antibiofilm agent to control L. monocytogenes contamination.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.