Glass- to-glass anodic bonding for high vacuum packaging of microelectronics and its stability

Duck‐Jung Lee, B. Ju, Yun‐Hi Lee, Jin Jang, M. Oh
{"title":"Glass- to-glass anodic bonding for high vacuum packaging of microelectronics and its stability","authors":"Duck‐Jung Lee, B. Ju, Yun‐Hi Lee, Jin Jang, M. Oh","doi":"10.1109/MEMSYS.2000.838525","DOIUrl":null,"url":null,"abstract":"In this work, we have developed a new high vacuum packaging method using a glass-to-glass bonding for the application to microelectronic devices such as field emission display (FED). The glass-to-glass anodic bonding was established and optimized using introducing thin amorphous silicon (a-Si) interlayer. Also, we propose that the amount of oxygen ions is one of the important factors during the bonding process, as confirmed from the SIMS and XPS analyses for the reaction region of Si-O bond in interface. Our method was very effective to reduce the bonding temperature and make the high vacuum package of microelectronic devices over 10/sup -4/ Torr. Finally, to evaluate the vacuum sealing capability of a FED panel packaged by the method, the leak characteristics of the vacuum was examined by spinning rotor gauge (SRG) during 6 months and the electron emission properties of the panel were measured continuously for time variation during 26 days.","PeriodicalId":251857,"journal":{"name":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2000.838525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this work, we have developed a new high vacuum packaging method using a glass-to-glass bonding for the application to microelectronic devices such as field emission display (FED). The glass-to-glass anodic bonding was established and optimized using introducing thin amorphous silicon (a-Si) interlayer. Also, we propose that the amount of oxygen ions is one of the important factors during the bonding process, as confirmed from the SIMS and XPS analyses for the reaction region of Si-O bond in interface. Our method was very effective to reduce the bonding temperature and make the high vacuum package of microelectronic devices over 10/sup -4/ Torr. Finally, to evaluate the vacuum sealing capability of a FED panel packaged by the method, the leak characteristics of the vacuum was examined by spinning rotor gauge (SRG) during 6 months and the electron emission properties of the panel were measured continuously for time variation during 26 days.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于微电子高真空封装的玻璃-玻璃阳极键合及其稳定性
在这项工作中,我们开发了一种新的高真空封装方法,使用玻璃对玻璃键合,用于微电子器件,如场发射显示器(FED)。通过引入薄非晶硅(a-Si)夹层,建立并优化了玻璃间的阳极键合。此外,界面上Si-O键反应区域的SIMS和XPS分析也证实了氧离子的数量是键合过程中的重要因素之一。我们的方法对于降低键合温度,使微电子器件的高真空封装达到10/sup -4/ Torr以上是非常有效的。最后,通过旋转转子计(SRG)检测了6个月的真空泄漏特性,并连续测量了26天的电子发射特性随时间的变化,以评价该方法封装的FED板的真空密封能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A normally closed in-channel micro check valve Direct writing for three-dimensional microfabrication using synchrotron radiation etching Development of chain-type micromachine for inspection of outer tube surfaces (basic performance of the 1st prototype) An electrostatically excited 2D-micro-scanning-mirror with an in-plane configuration of the driving electrodes Glass- to-glass anodic bonding for high vacuum packaging of microelectronics and its stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1