K. Pettigrew, J. Kirshberg, K. Yerkes, D. Trebotich, D. Liepmann
{"title":"Performance of a MEMS based micro capillary pumped loop for chip-level temperature control","authors":"K. Pettigrew, J. Kirshberg, K. Yerkes, D. Trebotich, D. Liepmann","doi":"10.1109/MEMSYS.2001.906569","DOIUrl":null,"url":null,"abstract":"To provide direct cooling to electronics and microelectromechanical systems, a three port micro-capillary pumped loop (CPL) was designed, fabricated and tested using current MEMS technology. The two wafer design consists of a silicon and a borofloat glass wafer. An evaporator, condenser, reservoir, and liquid and vapor lines were etched into the silicon wafer, while the glass wafer serves as a cover plate into which grooves were etched for capillary pumping. The geometry of the components of the device were determined via an analytical study. A finished device was run near steady state using laser spot heating and water as the working fluid. It was determined that a 1 mm/spl times/2 mm evaporator operates at a constant 100 /spl deg/C until wick dry-out at a laser power of 7.5 W (+/-2 W). Furthermore, with the same laser power the micro-CPL resulted in a backside cooling of at least 7 degrees C.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2001.906569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
To provide direct cooling to electronics and microelectromechanical systems, a three port micro-capillary pumped loop (CPL) was designed, fabricated and tested using current MEMS technology. The two wafer design consists of a silicon and a borofloat glass wafer. An evaporator, condenser, reservoir, and liquid and vapor lines were etched into the silicon wafer, while the glass wafer serves as a cover plate into which grooves were etched for capillary pumping. The geometry of the components of the device were determined via an analytical study. A finished device was run near steady state using laser spot heating and water as the working fluid. It was determined that a 1 mm/spl times/2 mm evaporator operates at a constant 100 /spl deg/C until wick dry-out at a laser power of 7.5 W (+/-2 W). Furthermore, with the same laser power the micro-CPL resulted in a backside cooling of at least 7 degrees C.