Research on Formation Pressure Prediction Based on Neural Network System Identification Theory

Cheng Liang, S. Lijun
{"title":"Research on Formation Pressure Prediction Based on Neural Network System Identification Theory","authors":"Cheng Liang, S. Lijun","doi":"10.1109/ITCA52113.2020.00151","DOIUrl":null,"url":null,"abstract":"The traditional formation pressure calculation mostly uses the system identification method of empirical formula and fitting formula. It can not get satisfactory identification results. In this paper, neural network is applied to system identification. A neural network identification model and improved error back propagation algorithm are researched. It is applied to the formation pressure prediction of injection production system. The process of system identification is the process of directly learning the input and output data of the system. The experimental results show that the neural network is effective in system identification.","PeriodicalId":103309,"journal":{"name":"2020 2nd International Conference on Information Technology and Computer Application (ITCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Information Technology and Computer Application (ITCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCA52113.2020.00151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional formation pressure calculation mostly uses the system identification method of empirical formula and fitting formula. It can not get satisfactory identification results. In this paper, neural network is applied to system identification. A neural network identification model and improved error back propagation algorithm are researched. It is applied to the formation pressure prediction of injection production system. The process of system identification is the process of directly learning the input and output data of the system. The experimental results show that the neural network is effective in system identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络系统识别理论的地层压力预测研究
传统的地层压力计算多采用经验公式和拟合公式的系统识别方法。但不能得到满意的鉴定结果。本文将神经网络应用于系统辨识。研究了一种神经网络辨识模型和改进的误差反向传播算法。应用于注采系统地层压力预测。系统辨识的过程就是直接学习系统输入输出数据的过程。实验结果表明,神经网络在系统辨识中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Physically-based Computer Animation Application and research of heuristic search algorithm in crawler field Application of Student achievement Analysis based on Apriori Algorithm A Robust Routing Algorithm with Dynamic Minimum Hop Selection in Wireless Sensor Networks with Unreliable Links Research on Formation Pressure Prediction Based on Neural Network System Identification Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1