Saungeun Park, Weinan Zhu, Hsiao-Yu Chang, M. Yogeesh, R. Ghosh, S. Banerjee, D. Akinwande
{"title":"High-frequency prospects of 2D nanomaterials for flexible nanoelectronics from baseband to sub-THz devices","authors":"Saungeun Park, Weinan Zhu, Hsiao-Yu Chang, M. Yogeesh, R. Ghosh, S. Banerjee, D. Akinwande","doi":"10.1109/IEDM.2015.7409812","DOIUrl":null,"url":null,"abstract":"We report on the state of the art sub-μm length (L) flexible two dimensional radio frequency thin film transistors operating in the velocity saturation regime for achieving maximum carrier transport or under high-field. We realize large-area monolayer MoS<sub>2</sub> on flexible polyimide with 5 GHz cut-off frequency (f<sub>T</sub>), a record value for flexible synthesized transitional metal dichalcogenides (TMDs). For higher frequency devices, flexible black phosphorus (BP) RF TFT is demonstrated for the first time with f<sub>T</sub> ~ 17.5 GHz for L = 0.5 μm, yielding v<sub>sat</sub> ~ 5.5 × 10<sup>6</sup> cm/s. In addition, for flexible sub-THz nanosystem front-ends, we have achieved record 100 GHz graphene TFTs (v<sub>sat</sub> ~ 8.8 × 106 cm/s) on flexible glass, 56% higher than that of graphene TFTs on polymeric substrates.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We report on the state of the art sub-μm length (L) flexible two dimensional radio frequency thin film transistors operating in the velocity saturation regime for achieving maximum carrier transport or under high-field. We realize large-area monolayer MoS2 on flexible polyimide with 5 GHz cut-off frequency (fT), a record value for flexible synthesized transitional metal dichalcogenides (TMDs). For higher frequency devices, flexible black phosphorus (BP) RF TFT is demonstrated for the first time with fT ~ 17.5 GHz for L = 0.5 μm, yielding vsat ~ 5.5 × 106 cm/s. In addition, for flexible sub-THz nanosystem front-ends, we have achieved record 100 GHz graphene TFTs (vsat ~ 8.8 × 106 cm/s) on flexible glass, 56% higher than that of graphene TFTs on polymeric substrates.