G. Piccolboni, G. Molas, J. Portal, R. Coquand, M. Bocquet, D. Garbin, E. Vianello, C. Carabasse, V. Delaye, C. Pellissier, T. Magis, C. Cagli, M. Gely, O. Cueto, D. Deleruyelle, G. Ghibaudo, B. De Salvo, L. Perniola
{"title":"Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications","authors":"G. Piccolboni, G. Molas, J. Portal, R. Coquand, M. Bocquet, D. Garbin, E. Vianello, C. Carabasse, V. Delaye, C. Pellissier, T. Magis, C. Cagli, M. Gely, O. Cueto, D. Deleruyelle, G. Ghibaudo, B. De Salvo, L. Perniola","doi":"10.1109/IEDM.2015.7409717","DOIUrl":null,"url":null,"abstract":"Combining Resistive RAM concept with Vertical NAND technology and design, Vertical RRAM (VRRAM) was recently proposed as a cost-effective and extensible technology for future mass data storage applications [1]. 3D RRAM based neural networks were also proposed to emulate the potentiation and depression of a synapse [2], but more complex circuits were not discussed. In previous works [3-4], various RRAM based neuromorphic circuits were proposed and investigated, using planar devices.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
Combining Resistive RAM concept with Vertical NAND technology and design, Vertical RRAM (VRRAM) was recently proposed as a cost-effective and extensible technology for future mass data storage applications [1]. 3D RRAM based neural networks were also proposed to emulate the potentiation and depression of a synapse [2], but more complex circuits were not discussed. In previous works [3-4], various RRAM based neuromorphic circuits were proposed and investigated, using planar devices.