Deffect profiling in the SiO2/ Al2O3 interface using Variable Tcharge-Tdischarge Amplitude Charge Pumping (VT2ACP)

M. Zahid, R. Degraeve, M. Cho, L. Pantisano, D. R. Aguado, J. van Houdt, G. Groeseneken, M. Jurczak
{"title":"Deffect profiling in the SiO2/ Al2O3 interface using Variable Tcharge-Tdischarge Amplitude Charge Pumping (VT2ACP)","authors":"M. Zahid, R. Degraeve, M. Cho, L. Pantisano, D. R. Aguado, J. van Houdt, G. Groeseneken, M. Jurczak","doi":"10.1109/IRPS.2009.5173219","DOIUrl":null,"url":null,"abstract":"A Variable T<inf>charge</inf>-T<inf>discharge</inf> Amplitude Charge Pumping (VT<sup>2</sup>ACP) is used to profile defect in the SiO<inf>2</inf> and Al<inf>2</inf>O<inf>3</inf> separately in Flash Memory based devices. It is shown that by independently controlling the pulse low timing “discharging time” and high level timing “charging time”, the contribution of interface and bulk Al<inf>2</inf>O<inf>3</inf> traps can be separated. By using the ellipsometry and the measured intersection time t<inf>charge</inf> to trap in the high- k (∼60 μs), SiO<inf>2</inf> thickness of 0.87 nm and scanning rate of 0.19nm/dec is found. Using a slanted wafer, the result shows that in the case of thin SiO<inf>2</inf> (∼1nm) the trap density close to the substrate (short t<inf>charge</inf>) is one order of magnitude higher compared to thick SiO<inf>2</inf> (∼3nm). For t<inf>SiO2</inf> = 1.7nm all traps are in the SiO<inf>2</inf> or SiO<inf>2</inf>/Al<inf>2</inf>O<inf>3</inf> transition layer. Only for the thickest SiO<inf>2</inf> layers (2.7 and 3 nm) the trap density becomes low and constant. Additionally WKB-approximation is used to calculate the filling probability of the traps (f<inf>T</inf>), the modeled scanning rate nearly doubles to ∼0.29 nm/dec and 0.27 nm/dec for amorphous and crystalline, respectively. In summary, the method of trap energy/depth profiling by using VT<sup>2</sup>ACP allows scanning from ∼0.5nm up to 1.2nm in depth and 0.1 to 0.7eV in energy range above the E<inf>c</inf><sup>Si</sup> band depending on sample used. The results show that there exist significant interaction between SiO<inf>2</inf> and Al<inf>2</inf>O<inf>3</inf> when processed with PDA 1000°C. For amorphous Al<inf>2</inf>O<inf>3</inf> (PDA 700°C) the impact of the precursor is not reflected in the SiO<inf>2</inf> trap density while for crystalline Al<inf>2</inf>O<inf>3</inf> no increase in trap density at 0.3eV above the E<inf>c</inf><sup>Si</sup> band is observed.","PeriodicalId":345860,"journal":{"name":"2009 IEEE International Reliability Physics Symposium","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2009.5173219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A Variable Tcharge-Tdischarge Amplitude Charge Pumping (VT2ACP) is used to profile defect in the SiO2 and Al2O3 separately in Flash Memory based devices. It is shown that by independently controlling the pulse low timing “discharging time” and high level timing “charging time”, the contribution of interface and bulk Al2O3 traps can be separated. By using the ellipsometry and the measured intersection time tcharge to trap in the high- k (∼60 μs), SiO2 thickness of 0.87 nm and scanning rate of 0.19nm/dec is found. Using a slanted wafer, the result shows that in the case of thin SiO2 (∼1nm) the trap density close to the substrate (short tcharge) is one order of magnitude higher compared to thick SiO2 (∼3nm). For tSiO2 = 1.7nm all traps are in the SiO2 or SiO2/Al2O3 transition layer. Only for the thickest SiO2 layers (2.7 and 3 nm) the trap density becomes low and constant. Additionally WKB-approximation is used to calculate the filling probability of the traps (fT), the modeled scanning rate nearly doubles to ∼0.29 nm/dec and 0.27 nm/dec for amorphous and crystalline, respectively. In summary, the method of trap energy/depth profiling by using VT2ACP allows scanning from ∼0.5nm up to 1.2nm in depth and 0.1 to 0.7eV in energy range above the EcSi band depending on sample used. The results show that there exist significant interaction between SiO2 and Al2O3 when processed with PDA 1000°C. For amorphous Al2O3 (PDA 700°C) the impact of the precursor is not reflected in the SiO2 trap density while for crystalline Al2O3 no increase in trap density at 0.3eV above the EcSi band is observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变电荷-放电幅值电荷泵浦(VT2ACP)对SiO2/ Al2O3界面缺陷的影响
采用可变电荷-放电幅值电荷泵浦(VT2ACP)分别分析了Flash Memory器件中SiO2和Al2O3的缺陷。结果表明,通过分别控制脉冲低定时“放电时间”和高定时“充电时间”,可以分离出界面和大块Al2O3陷阱。利用椭圆偏振法和测得的电荷交点时间在高k (~ 60 μs)下捕获,SiO2厚度为0.87 nm,扫描速率为0.19nm/dec。使用斜晶圆,结果表明,在薄SiO2 (~ 1nm)的情况下,靠近衬底(短电荷)的陷阱密度比厚SiO2 (~ 3nm)高一个数量级。当tSiO2 = 1.7nm时,所有的陷阱都在SiO2或SiO2/Al2O3过渡层中。只有在最厚的SiO2层(2.7和3nm)中,陷阱密度才会变低并保持不变。此外,使用wkb近似计算陷阱的填充概率(fT),模拟的扫描速率几乎翻了一番,非晶和晶体分别达到0.29 nm/dec和0.27 nm/dec。总之,使用VT2ACP的陷阱能量/深度分析方法允许扫描深度为~ 0.5nm至1.2nm, EcSi波段以上的能量范围为0.1至0.7eV,具体取决于所使用的样品。结果表明:当PDA温度为1000℃时,SiO2与Al2O3之间存在明显的相互作用;对于无定形Al2O3 (PDA 700°C),前驱体的影响没有反映在SiO2陷阱密度上,而对于结晶Al2O3,在EcSi波段以上0.3eV时,陷阱密度没有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Life-stress relationship for thin film transistor gate line interconnects on flexible substrates The mechanism of device damage during bump process for flip-chip package Very fast transient simulation and measurement methodology for ESD technology development Field effect diode for effective CDM ESD protection in 45 nm SOI technology Reliability challenges for power devices under active cycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1