Machine Learning Based V-ramp VBD Predictive Model Using OCD-measured Fab Parameters for Early Detection of MOL Reliability Risk

Sungman Rhee, Hyunjin Kim, Sangku Park, T. Uemura, Yuchul Hwang, S. Choo, Jinju Kim, H. Rhee, Shin-Young Chung
{"title":"Machine Learning Based V-ramp VBD Predictive Model Using OCD-measured Fab Parameters for Early Detection of MOL Reliability Risk","authors":"Sungman Rhee, Hyunjin Kim, Sangku Park, T. Uemura, Yuchul Hwang, S. Choo, Jinju Kim, H. Rhee, Shin-Young Chung","doi":"10.1109/IRPS48203.2023.10117962","DOIUrl":null,"url":null,"abstract":"In this paper, we propose for the first time a breakdown voltage $(\\mathrm{V}_{\\text{BD}})$ prediction method using structural parameters measured in-process for early detection of reliability risks in Middle-Of-Line (MOL). $\\boldsymbol{\\mathrm{V}_{\\text{BD}}}$ of the MOL is proportional to the distance of the Gate (PC) to Source/Drain-Contact (CA). Since PC to CA space can be calculated using MOL-related structural parameters at the early stage of the process, we created and validated models predicting V-ramp $\\boldsymbol{\\mathrm{V}_{\\text{BD}}}$ using five fab parameters measured in-process by optical critical dimension scatterometry (OCD). And we compared three modeling methods. The first is the geometrical calculation model (GCM), the second is multiple-linear-regression (MLR) method, and the last is the Multi-Layer Perceptions (MLP) model based on the machine learning (ML). We found the highest predictive consistency $\\boldsymbol{\\mathrm{R}^{2}0.6}$ in ML method, and it is expected to contribute to the early prediction of MOL V-ramp $\\mathrm{V}_{\\text{BD}}$ through additional consistency improvements.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose for the first time a breakdown voltage $(\mathrm{V}_{\text{BD}})$ prediction method using structural parameters measured in-process for early detection of reliability risks in Middle-Of-Line (MOL). $\boldsymbol{\mathrm{V}_{\text{BD}}}$ of the MOL is proportional to the distance of the Gate (PC) to Source/Drain-Contact (CA). Since PC to CA space can be calculated using MOL-related structural parameters at the early stage of the process, we created and validated models predicting V-ramp $\boldsymbol{\mathrm{V}_{\text{BD}}}$ using five fab parameters measured in-process by optical critical dimension scatterometry (OCD). And we compared three modeling methods. The first is the geometrical calculation model (GCM), the second is multiple-linear-regression (MLR) method, and the last is the Multi-Layer Perceptions (MLP) model based on the machine learning (ML). We found the highest predictive consistency $\boldsymbol{\mathrm{R}^{2}0.6}$ in ML method, and it is expected to contribute to the early prediction of MOL V-ramp $\mathrm{V}_{\text{BD}}$ through additional consistency improvements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的V-ramp VBD预测模型,利用ocd测量晶圆厂参数早期检测MOL可靠性风险
本文首次提出了一种基于过程中测量的结构参数的击穿电压$(\ mathm {V}_{\text{BD}})$预测方法,用于在线中线可靠性风险的早期检测。MOL的$\boldsymbol{\mathrm{V}_{\text{BD}}}$与栅极(PC)到源漏接点(CA)的距离成正比。由于PC到CA空间可以在工艺的早期阶段使用mol相关的结构参数来计算,我们创建并验证了使用光学临界尺寸散射测量(OCD)在工艺中测量的五个晶圆厂参数来预测V-ramp $\boldsymbol{\mathrm{V}_{\text{BD}}}$的模型。并比较了三种建模方法。首先是几何计算模型(GCM),其次是多元线性回归(MLR)方法,最后是基于机器学习(ML)的多层感知(MLP)模型。我们在ML方法中发现了最高的预测一致性$\boldsymbol{\mathrm{R}^{2}0.6}$,并期望通过进一步的一致性改进为MOL V-ramp $\mathrm{V}_{\text{BD}}$的早期预测做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insight Into HCI Reliability on I/O Nitrided Devices Signal duration sensitive degradation in scaled devices Investigation on NBTI Control Techniques of HKMG Transistors for Low-power DRAM applications Current Injection Effect on ESD Behaviors of the Parasitic Bipolar Transistors inside P+/N-well diode GHz Cycle-to-Cycle Variation in Ultra-scaled FinFETs: From the Time-Zero to the Aging States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1