M. Ball, J. Rosal, R. Mckee, W. Loh, T. Houston, R. Garcia, J. Raval, D. Li, R. Hollingsworth, R. Gury, R. Eklund, J. Vaccani, B. Castellano, F. Piacibello, S. Ashburn, A. Tsao, A. Krishnan, J. Ondrusek, T. Anderson
{"title":"A Screening Methodology for VMIN Drift in SRAM Arrays with Application to Sub-65nm Nodes","authors":"M. Ball, J. Rosal, R. Mckee, W. Loh, T. Houston, R. Garcia, J. Raval, D. Li, R. Hollingsworth, R. Gury, R. Eklund, J. Vaccani, B. Castellano, F. Piacibello, S. Ashburn, A. Tsao, A. Krishnan, J. Ondrusek, T. Anderson","doi":"10.1109/IEDM.2006.346883","DOIUrl":null,"url":null,"abstract":"SRAMs are an integral part of system on chip devices. With transistor and gate length scaling to 65nm/45nm nodes, SRAM stability across the product's lifetime has become a challenge. Negative bias temperature instability, defects, or other phenomena that may manifest itself as a transistor threshold voltage (VT) increase can result in VMIN drift of SRAM memory cells through burn-in and/or operation. A direct assessment at time-zero is difficult because the transistor VT has not yet shifted, and therefore no capability to screen VMIN shift at time zero can be developed. This work describes a methodology developed on 65nm low power and high performance process technologies at Texas Instruments for screening SRAM cells at time zero before they become reliability issues","PeriodicalId":366359,"journal":{"name":"2006 International Electron Devices Meeting","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2006.346883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
SRAMs are an integral part of system on chip devices. With transistor and gate length scaling to 65nm/45nm nodes, SRAM stability across the product's lifetime has become a challenge. Negative bias temperature instability, defects, or other phenomena that may manifest itself as a transistor threshold voltage (VT) increase can result in VMIN drift of SRAM memory cells through burn-in and/or operation. A direct assessment at time-zero is difficult because the transistor VT has not yet shifted, and therefore no capability to screen VMIN shift at time zero can be developed. This work describes a methodology developed on 65nm low power and high performance process technologies at Texas Instruments for screening SRAM cells at time zero before they become reliability issues