{"title":"Fundamental understanding of porous low-k dielectric breakdown","authors":"Shou-Chung Lee, A. Oates, Kow-Ming Chang","doi":"10.1109/IRPS.2009.5173300","DOIUrl":null,"url":null,"abstract":"We investigate the impact of porosity on the reliability of low-k dielectrics. We show that electric field enhancement around pores occurs and is significantly increased by Cu interaction, suggesting a new potential mechanism for breakdown of dielectrics at stress conditions. We develop of an analytic model to predict failure distribution parameters as a function of porosity and show that the model is in good agreement with measurements for porosity in the range of 5% to 40%. We explain why the field acceleration factor γ is a constant for all silica-based material according to percolation theory. We propose that the percolation path difference between high field and low field would make the field dependence on failure time become non-linear.","PeriodicalId":345860,"journal":{"name":"2009 IEEE International Reliability Physics Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2009.5173300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We investigate the impact of porosity on the reliability of low-k dielectrics. We show that electric field enhancement around pores occurs and is significantly increased by Cu interaction, suggesting a new potential mechanism for breakdown of dielectrics at stress conditions. We develop of an analytic model to predict failure distribution parameters as a function of porosity and show that the model is in good agreement with measurements for porosity in the range of 5% to 40%. We explain why the field acceleration factor γ is a constant for all silica-based material according to percolation theory. We propose that the percolation path difference between high field and low field would make the field dependence on failure time become non-linear.