{"title":"Water-powered, osmotic microactuator","authors":"Y. Su, L. Lin, A. Pisano","doi":"10.1109/JMEMS.2002.805045","DOIUrl":null,"url":null,"abstract":"This paper presents a microactuator that draws power directly from water and produces mechanical actuation without any electrical energy consumption. The microactuator is made of cellulose acetate with cylindrical cavity of 0.5 to 1.5 mm in diameter and 0.4 to 1 mm in depth. These cavities are filled with sodium chloride and a polyvinylidene chloride copolymer diaphragm is spun on as the cover. Using osmosis for the first time on the microscale, this water-powered, osmotic actuator can provide both high pressure (up to 35.6 MPa) and large actuating displacement (up to 0.8 mm as measured with an actuator of 0.8 mm in diameter). Incompressible water flow controlled by membrane characteristics and chemical potential enables the direct energy conversion to provide mechanical actuation. Measurement results show that constant volume change of 4/spl sim/15 nl/hr can be achieved depending on the design. When integrated with other microfluidic devices, this osmotic microactuator can serve as a clean, compact and inexpensive fluid power source.","PeriodicalId":311365,"journal":{"name":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2002.805045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

Abstract

This paper presents a microactuator that draws power directly from water and produces mechanical actuation without any electrical energy consumption. The microactuator is made of cellulose acetate with cylindrical cavity of 0.5 to 1.5 mm in diameter and 0.4 to 1 mm in depth. These cavities are filled with sodium chloride and a polyvinylidene chloride copolymer diaphragm is spun on as the cover. Using osmosis for the first time on the microscale, this water-powered, osmotic actuator can provide both high pressure (up to 35.6 MPa) and large actuating displacement (up to 0.8 mm as measured with an actuator of 0.8 mm in diameter). Incompressible water flow controlled by membrane characteristics and chemical potential enables the direct energy conversion to provide mechanical actuation. Measurement results show that constant volume change of 4/spl sim/15 nl/hr can be achieved depending on the design. When integrated with other microfluidic devices, this osmotic microactuator can serve as a clean, compact and inexpensive fluid power source.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水动力,渗透微驱动器
本文介绍了一种直接从水中获取动力的微致动器,在不消耗任何电能的情况下产生机械致动。微致动器由醋酸纤维素制成,直径0.5至1.5毫米,深度0.4至1毫米的圆柱形腔。这些空腔内填充氯化钠和聚偏二氯乙烯共聚物隔膜作为覆盖。首次在微尺度上使用渗透,这种水驱动的渗透执行器可以提供高压(高达35.6 MPa)和大的执行位移(使用直径为0.8 mm的执行器测量的最大位移为0.8 mm)。由膜特性和化学势控制的不可压缩水流使直接能量转换提供机械驱动。测量结果表明,根据不同的设计,可以实现4/spl sim/15 nl/hr的恒定体积变化。当与其他微流体装置集成时,这种渗透微驱动器可以作为一种清洁,紧凑和廉价的流体动力源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrostatic impact-drive microactuator High-density 3D packaging technology for CCD micro-camera system module High throughput optical near-field aperture array for data storage Device transplant of optical MEMS for out of plane beam steering Performance of a MEMS based micro capillary pumped loop for chip-level temperature control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1