S. Blaeser, S. Glass, C. Schulte-Braucks, K. Narimani, N. V. D. Driesch, S. Wirths, A. Tiedemann, S. Trellenkamp, D. Buca, Q. Zhao, S. Mantl
{"title":"Novel SiGe/Si line tunneling TFET with high Ion at low Vdd and constant SS","authors":"S. Blaeser, S. Glass, C. Schulte-Braucks, K. Narimani, N. V. D. Driesch, S. Wirths, A. Tiedemann, S. Trellenkamp, D. Buca, Q. Zhao, S. Mantl","doi":"10.1109/IEDM.2015.7409757","DOIUrl":null,"url":null,"abstract":"This paper presents a novel SiGe/Si tunneling field-effect transistor (TFET) which exploits line tunneling parallel with the gate electric field. The device makes use of selective and self-adjusted silicidation and a counter doped pocket within the SiGe layer at the source tunnel junction, resulting in a high on-current Ion = 6.7 μA/μm at a supply voltage VDD = -0.5 V and a constant subthreshold swing (SS) of about 80 mV/dec over four orders of magnitude of drain-current Id.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
This paper presents a novel SiGe/Si tunneling field-effect transistor (TFET) which exploits line tunneling parallel with the gate electric field. The device makes use of selective and self-adjusted silicidation and a counter doped pocket within the SiGe layer at the source tunnel junction, resulting in a high on-current Ion = 6.7 μA/μm at a supply voltage VDD = -0.5 V and a constant subthreshold swing (SS) of about 80 mV/dec over four orders of magnitude of drain-current Id.