ReRAM CiM Fluctuation Pattern Classification by CNN Trained on Artificially Created Dataset

Ayumu Yamada, Naoko Misawa, C. Matsui, Ken Takeuchi
{"title":"ReRAM CiM Fluctuation Pattern Classification by CNN Trained on Artificially Created Dataset","authors":"Ayumu Yamada, Naoko Misawa, C. Matsui, Ken Takeuchi","doi":"10.1109/IRPS48203.2023.10118305","DOIUrl":null,"url":null,"abstract":"A CNN-based Fluctuation Pattern Classifier (FPC) is proposed. FPC is fully trained on the artificially created dataset with assumed fluctuation patterns such as random telegraph noise (RTN) and Oxygen Vacancy movement. FPC is applied to the measured ReRAM signals under different write conditions before read cycles and physical models are established based on the classification results. Proposed fluctuation reduction write (FRW) reduces ReRAM fluctuation rate by 35.1% to improve the inference accuracy of neural network.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10118305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A CNN-based Fluctuation Pattern Classifier (FPC) is proposed. FPC is fully trained on the artificially created dataset with assumed fluctuation patterns such as random telegraph noise (RTN) and Oxygen Vacancy movement. FPC is applied to the measured ReRAM signals under different write conditions before read cycles and physical models are established based on the classification results. Proposed fluctuation reduction write (FRW) reduces ReRAM fluctuation rate by 35.1% to improve the inference accuracy of neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工数据集训练的CNN波动模式分类
提出了一种基于cnn的波动模式分类器。FPC在人工创建的数据集上进行了充分的训练,这些数据集具有假设的波动模式,如随机电报噪声(RTN)和氧空位运动。在读取周期之前,将FPC应用于不同写入条件下的实测ReRAM信号,并根据分类结果建立物理模型。提出的FRW (fluctuation reduction write)算法可将ReRAM波动率降低35.1%,提高神经网络的推理精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insight Into HCI Reliability on I/O Nitrided Devices Signal duration sensitive degradation in scaled devices Investigation on NBTI Control Techniques of HKMG Transistors for Low-power DRAM applications Current Injection Effect on ESD Behaviors of the Parasitic Bipolar Transistors inside P+/N-well diode GHz Cycle-to-Cycle Variation in Ultra-scaled FinFETs: From the Time-Zero to the Aging States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1