Clump Hypothesis and Mechanisms of Breakdown Initiation in Centimeter Vacuum Gaps

V. A. Nevrovsky
{"title":"Clump Hypothesis and Mechanisms of Breakdown Initiation in Centimeter Vacuum Gaps","authors":"V. A. Nevrovsky","doi":"10.1109/DEIV.2006.357224","DOIUrl":null,"url":null,"abstract":"This paper discusses ways of free macroparticle generation in real conditions of vacuum electric devices and physical processes occurring at the particle interaction with an electrode. As a result, a model of vacuum breakdown initiation was suggested, including release of loosely bonded particles by electric field, their acceleration to an opposite electrode, impacts onto the electrode and formation of potentially electron emitting centers. Some published observations and data on breakdowns in centimeter gaps with long delays (tens of microseconds) indirectly indicate short-term existence of emission centers immediately prior breakdown, and thus they support the model. Mechanism of the emission center formation by plastic deformation of material in the impact zone in presence of electric field is discussed. A final stage of breakdown initiation involves emission current interaction with the anode, leading to the anode thermal instability","PeriodicalId":369861,"journal":{"name":"2006 International Symposium on Discharges and Electrical Insulation in Vacuum","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Discharges and Electrical Insulation in Vacuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEIV.2006.357224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper discusses ways of free macroparticle generation in real conditions of vacuum electric devices and physical processes occurring at the particle interaction with an electrode. As a result, a model of vacuum breakdown initiation was suggested, including release of loosely bonded particles by electric field, their acceleration to an opposite electrode, impacts onto the electrode and formation of potentially electron emitting centers. Some published observations and data on breakdowns in centimeter gaps with long delays (tens of microseconds) indirectly indicate short-term existence of emission centers immediately prior breakdown, and thus they support the model. Mechanism of the emission center formation by plastic deformation of material in the impact zone in presence of electric field is discussed. A final stage of breakdown initiation involves emission current interaction with the anode, leading to the anode thermal instability
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厘米级真空间隙中击穿起始的团块假说和机制
本文讨论了在真空电器件实际条件下自由大粒子的产生方式和粒子与电极相互作用时发生的物理过程。本文提出了真空击穿起始模型,包括松散结合粒子在电场作用下的释放、它们向相反电极的加速、对电极的冲击以及潜在电子发射中心的形成。一些已发表的观测和数据表明,在长时间延迟(几十微秒)的厘米间隙中击穿,间接表明在击穿之前立即存在短期的发射中心,因此它们支持该模型。讨论了电场作用下冲击区材料塑性变形形成发射中心的机理。击穿起始的最后阶段涉及发射电流与阳极的相互作用,导致阳极热不稳定
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma CVD for Producing Si Quantum Dot Films Determination of Plasma Current on the Electrode Biased a High Negative Potential Interaction of a Vacuum Arc with an SF6 Arc in a Hybrid Circuit Breaker during High-Current Interruption Improvement on the Property of TiO2 Films due to Plasma Processing Investigation of Plasma Recovery during Fall Time in Plasma Source Ion Implantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1