E. Hsieh, Z. H. Huang, S. Chung, J. Ke, C. Yang, C. Tsai, T. Yew
{"title":"The demonstration of low-cost and logic process fully-compatible OTP memory on advanced HKMG CMOS with a newly found dielectric fuse breakdown","authors":"E. Hsieh, Z. H. Huang, S. Chung, J. Ke, C. Yang, C. Tsai, T. Yew","doi":"10.1109/IEDM.2015.7409619","DOIUrl":null,"url":null,"abstract":"For the first time, the dielectric fuse breakdown has been observed in HKMG and poly-Si CMOS devices. It was found that, different from the conventional anti-fuse dielectric breakdown, such as the hard and soft breakdowns, this new fuse-breakdown behavior exhibits a typical property of an open gate and can be operated in much lower programming current (<; 50μA), fast speed (~20μsec), and excellent data retention, in comparison to the other fuse mechanisms. Based on this new mechanism, we have designed a smallest memory cell array which can be easily integrated into state-of-the-art advanced CMOS technology to realize highly reliable, secure, and dense OTP functionality with very low cost to meet the requirements of memory applications in the IoT era.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
For the first time, the dielectric fuse breakdown has been observed in HKMG and poly-Si CMOS devices. It was found that, different from the conventional anti-fuse dielectric breakdown, such as the hard and soft breakdowns, this new fuse-breakdown behavior exhibits a typical property of an open gate and can be operated in much lower programming current (<; 50μA), fast speed (~20μsec), and excellent data retention, in comparison to the other fuse mechanisms. Based on this new mechanism, we have designed a smallest memory cell array which can be easily integrated into state-of-the-art advanced CMOS technology to realize highly reliable, secure, and dense OTP functionality with very low cost to meet the requirements of memory applications in the IoT era.