The demonstration of low-cost and logic process fully-compatible OTP memory on advanced HKMG CMOS with a newly found dielectric fuse breakdown

E. Hsieh, Z. H. Huang, S. Chung, J. Ke, C. Yang, C. Tsai, T. Yew
{"title":"The demonstration of low-cost and logic process fully-compatible OTP memory on advanced HKMG CMOS with a newly found dielectric fuse breakdown","authors":"E. Hsieh, Z. H. Huang, S. Chung, J. Ke, C. Yang, C. Tsai, T. Yew","doi":"10.1109/IEDM.2015.7409619","DOIUrl":null,"url":null,"abstract":"For the first time, the dielectric fuse breakdown has been observed in HKMG and poly-Si CMOS devices. It was found that, different from the conventional anti-fuse dielectric breakdown, such as the hard and soft breakdowns, this new fuse-breakdown behavior exhibits a typical property of an open gate and can be operated in much lower programming current (<; 50μA), fast speed (~20μsec), and excellent data retention, in comparison to the other fuse mechanisms. Based on this new mechanism, we have designed a smallest memory cell array which can be easily integrated into state-of-the-art advanced CMOS technology to realize highly reliable, secure, and dense OTP functionality with very low cost to meet the requirements of memory applications in the IoT era.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

For the first time, the dielectric fuse breakdown has been observed in HKMG and poly-Si CMOS devices. It was found that, different from the conventional anti-fuse dielectric breakdown, such as the hard and soft breakdowns, this new fuse-breakdown behavior exhibits a typical property of an open gate and can be operated in much lower programming current (<; 50μA), fast speed (~20μsec), and excellent data retention, in comparison to the other fuse mechanisms. Based on this new mechanism, we have designed a smallest memory cell array which can be easily integrated into state-of-the-art advanced CMOS technology to realize highly reliable, secure, and dense OTP functionality with very low cost to meet the requirements of memory applications in the IoT era.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用新发现的介电熔断器击穿,在先进的HKMG CMOS上演示低成本和逻辑过程完全兼容的OTP存储器
首次在HKMG和多晶硅CMOS器件中观察到介电熔断现象。研究发现,与传统的硬击穿和软击穿等反熔断器介质击穿不同,这种新型熔断器的击穿行为具有典型的开栅特性,可以在较低的编程电流(<;50μA),速度快(~20μsec),数据保留性好。基于这种新机制,我们设计了一个最小的存储单元阵列,可以很容易地集成到最先进的CMOS技术中,以极低的成本实现高可靠、安全、密集的OTP功能,以满足物联网时代的存储应用需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications Hot carrier aging and its variation under use-bias: Kinetics, prediction, impact on Vdd and SRAM Robust and compact key generator using physically unclonable function based on logic-transistor-compatible poly-crystalline-Si channel FinFET technology High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC Physics-based compact modeling framework for state-of-the-art and emerging STT-MRAM technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1