{"title":"Multilevel Large-Scale Modules Placement with Refined Neighborhood Exchange","authors":"Kuan-Chung Wang, Hung-Ming Chen","doi":"10.1109/VDAT.2006.258168","DOIUrl":null,"url":null,"abstract":"In SoC era, it is necessary to have a good and efficient large-scale modules placement for better performance estimation in chip implementation or rapid prototyping. Good representation for non-slicing floorplan/placement and ability to solve large-scale modules packing are key components. MB*-tree (Lee et al., 2003) adopted very good and well-known representation B*-tree and modern multilevel framework to handle large-scale modules floorplanning/placement. However the simulated annealing approach in declustering stage paid more time to find candidate solutions with lower cost. In this paper, we transform the epsi-neighborhood and lambda-exchange (Goto, 1981) to fit in the large-scale modules placement and use it in the refinement stage of MB*-tree algorithm. The results are encouraging. We have obtained comparable or better results in area and wirelength metrics in less time spent (up to 30% improvement), compared with original MB*-tree framework","PeriodicalId":356198,"journal":{"name":"2006 International Symposium on VLSI Design, Automation and Test","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on VLSI Design, Automation and Test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VDAT.2006.258168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In SoC era, it is necessary to have a good and efficient large-scale modules placement for better performance estimation in chip implementation or rapid prototyping. Good representation for non-slicing floorplan/placement and ability to solve large-scale modules packing are key components. MB*-tree (Lee et al., 2003) adopted very good and well-known representation B*-tree and modern multilevel framework to handle large-scale modules floorplanning/placement. However the simulated annealing approach in declustering stage paid more time to find candidate solutions with lower cost. In this paper, we transform the epsi-neighborhood and lambda-exchange (Goto, 1981) to fit in the large-scale modules placement and use it in the refinement stage of MB*-tree algorithm. The results are encouraging. We have obtained comparable or better results in area and wirelength metrics in less time spent (up to 30% improvement), compared with original MB*-tree framework