{"title":"Carrier transport analysis of high-performance poly-Si Nanowire transistor fabricated by advanced SPC with record-high electron mobility","authors":"M. Oda, K. Sakuma, Y. Kamimuta, M. Saitoh","doi":"10.1109/IEDM.2015.7409637","DOIUrl":null,"url":null,"abstract":"This paper presents the fundamental carrier transport analysis of high-mobility poly-Si nanowire transistors (NW Tr). By adopting advanced SPC (solid-phase crystallization) process, record-high electron mobility (192cm2/Vs) and Ion (200μA/μm) at Ioff of 4nA/μm are achieved without using lasers or catalysts. Carrier density and temperature dependence of mobility, and also physical analysis of poly-Si crystallinity and the channel size, reveal that the origin of mobility degradation in conventional SPC poly-Si Tr. is Coulomb scattering due to defects inside grains as well as defects at grain boundaries and enhanced surface roughness scattering at poly-Si/gate oxide interface, all of which are weakened by advanced SPC process. At high carrier density, mobility of poly-Si nFETs and pFETs by advanced SPC process even exceeds bulk-Si (110) nFETs and (100) pFETs.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper presents the fundamental carrier transport analysis of high-mobility poly-Si nanowire transistors (NW Tr). By adopting advanced SPC (solid-phase crystallization) process, record-high electron mobility (192cm2/Vs) and Ion (200μA/μm) at Ioff of 4nA/μm are achieved without using lasers or catalysts. Carrier density and temperature dependence of mobility, and also physical analysis of poly-Si crystallinity and the channel size, reveal that the origin of mobility degradation in conventional SPC poly-Si Tr. is Coulomb scattering due to defects inside grains as well as defects at grain boundaries and enhanced surface roughness scattering at poly-Si/gate oxide interface, all of which are weakened by advanced SPC process. At high carrier density, mobility of poly-Si nFETs and pFETs by advanced SPC process even exceeds bulk-Si (110) nFETs and (100) pFETs.