V. Milanovic, M. Maharbiz, A. Singh, B. Warneke, Ningning Zhou, H. Chan, K. Pister
{"title":"Microrelays for batch transfer integration in RF systems","authors":"V. Milanovic, M. Maharbiz, A. Singh, B. Warneke, Ningning Zhou, H. Chan, K. Pister","doi":"10.1109/MEMSYS.2000.838618","DOIUrl":null,"url":null,"abstract":"This paper presents the first implementation of batch-transferred microrelays for a broad range of RF applications and substrates. The transferred relays include a variety of electrostatic pull-down type structures, as well as see-saw type structures. The batch-transfer methodology allows integration of optimized MEMS in RF systems on substrates such as sapphire, GaAs, and even CMOS. Gold-to-gold contact series microrelays with insertion loss of <0.15 dB, and isolation better than 36 dB at frequencies from 45 MHz to 40.0 GHz are demonstrated, as well as shunt switches with >40 dB of isolation and <0.12 dB insertion loss in that frequency range. A novel device structure which combines the benefits of see-saw operation and both shunt and series switching was shown to improve isolation of a single switch by /spl sim/8 dB while maintaining low insertion loss.","PeriodicalId":251857,"journal":{"name":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2000.838618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This paper presents the first implementation of batch-transferred microrelays for a broad range of RF applications and substrates. The transferred relays include a variety of electrostatic pull-down type structures, as well as see-saw type structures. The batch-transfer methodology allows integration of optimized MEMS in RF systems on substrates such as sapphire, GaAs, and even CMOS. Gold-to-gold contact series microrelays with insertion loss of <0.15 dB, and isolation better than 36 dB at frequencies from 45 MHz to 40.0 GHz are demonstrated, as well as shunt switches with >40 dB of isolation and <0.12 dB insertion loss in that frequency range. A novel device structure which combines the benefits of see-saw operation and both shunt and series switching was shown to improve isolation of a single switch by /spl sim/8 dB while maintaining low insertion loss.